Antwoord:
Ik zie niet dat een van de gegeven sets correct is.
Uitleg:
De grenslijn loopt door
heeft een vergelijking
De set die ik bedacht was
(Ik heb geen van deze opnieuw gecontroleerd, maar ik denk dat ze nauwkeurig genoeg zijn om een van de gegeven opties te elimineren)
Het geordende paar (1,5, 6) is een oplossing van directe variatie, hoe schrijf je de vergelijking van directe variatie? Vertegenwoordigt inverse variatie. Vertegenwoordigt directe variatie. Vertegenwoordigt geen van beide.?
Als (x, y) een directe variatie-oplossing vertegenwoordigt, dan is y = m * x voor een bepaalde constante m Gegeven het paar (1.5.6) hebben we 6 = m * (1.5) rarr m = 4 en de directe-variatievergelijking is y = 4x Als (x, y) een inverse variatie-oplossing voorstelt dan y = m / x voor een bepaalde constante m Gegeven het paar (1.5.6) hebben we 6 = m / 1.5 rarr m = 9 en de inverse-variatievergelijking is y = 9 / x Elke vergelijking die niet kan worden herschreven als een van de bovenstaande, is geen directe of een omgekeerde variatierekening. Bijvoorbeeld, y = x + 2 is geen van beide.
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!
Oplossen van kwadratische ongelijkheden. Hoe een systeem van kwadratische ongelijkheden op te lossen, met behulp van de dubbele nummerlijn?
We kunnen de dubbele-nummerlijn gebruiken om elk systeem van 2 of 3 kwadratische ongelijkheden op te lossen in één variabele (geschreven door Nghi H Nguyen). Een systeem van 2 kwadratische ongelijkheden in één variabele op te lossen met behulp van een dubbele-cijferlijn. Voorbeeld 1. Los het systeem op: f (x) = x ^ 2 + 2x - 3 <0 (1) g (x) = x ^ 2 - 4x - 5 <0 (2) Eerste oplossing f (x) = 0 - -> 2 echte wortels: 1 en -3 Tussen de 2 echte wortels, f (x) <0 Los g (x) = 0 -> 2 echte wortels op: -1 en 5 Tussen de 2 echte wortels, g (x) <0 Grafiek de 2 oplossingen ingesteld op een dubbele num