Antwoord:
Langste mogelijke omtrek is
Uitleg:
Met de gegeven twee hoeken kunnen we de 3e hoek vinden door het concept te gebruiken dat de som van alle drie de hoeken in een driehoek is
Vandaar dat de derde hoek is
Laten we zeggen
Met behulp van Sine Rule hebben we,
waar, a, b en c zijn de lengte van de zijden tegenover
Met behulp van bovenstaande reeks vergelijkingen hebben we het volgende:
Nu, om de langst mogelijke omtrek van de driehoek te vinden
Ervan uitgaande dat,
Ervan uitgaande dat,
Ervan uitgaande dat,
Daarom is de langst mogelijke omtrek van de gegeven driehoek
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 12 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
De langst mogelijke omtrek is 12 + 40.155 + 32.786 = 84.941. Aangezien twee hoeken (2pi) / 3 en pi / 4 zijn, is de derde hoek pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Voor de langste perimeterzijde van lengte 12, zeg a, moet de tegenoverliggende kleinste hoek pi / 12 zijn en dan wordt de sinusformule gebruikt, andere twee zijden zijn 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Vandaar b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 en c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 De langst mogelijke omtrek is dus 12 + 40.155 + 32.786 = 84.941.
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 4 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
P_max = 28.31 eenheden Het probleem geeft je twee van de drie hoeken in een willekeurige driehoek. Omdat de som van de hoeken in een driehoek moet oplopen tot 180 graden, of pi radialen, kunnen we de derde hoek vinden: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Laten we de driehoek tekenen: het probleem stelt dat een van de zijden van de driehoek een lengte van 4 heeft, maar het geeft niet aan welke kant. In elke willekeurige driehoek is het waar dat de kleinste zijde tegenovergesteld is aan de kleinste hoek. Als we de omtrek willen maximaliseren, moeten we de
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 19 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
Langst mogelijke omtrekkleur (groen) (P = 19 + 51.909 + 63.5752 = 134.4842) Drie hoeken zijn (2pi) / 3, pi / 4, pi / 12 als de drie hoeken optellen tot pi ^ c Om de langste perimeter te krijgen, kant 19 moet overeenkomen met de kleinste hoek pi / 12 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4) ) / sin (pi / 12) = 51.909 c = (19 * sin ((2pi) / 3)) / sin (pi / 12) = 63.5752 Langst mogelijke omtrekkleur (groen) (P = 19 + 51.909 + 63.5752 = 134.4842 )