Antwoord:
Uitleg:
# R = sqrt (a ^ 2 + b ^ 2) # # Theta = tan ^ -1 (b / a) #
Voor
Voor
Voor
Bewijs:
Hoe deel je (i + 3) / (-3i +7) in trigonometrische vorm?
0.311 + 0.275i Eerst zal ik de uitdrukkingen herschrijven in de vorm van a + bi (3 + i) / (7-3i) Voor een complex getal z = a + bi, z = r (costheta + isintheta), waarbij: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Laten we 3 + i z_1 en 7-3i z_2 aanroepen. Voor z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0.32 ^ c z_1 = sqrt (10) (cos (0.32) + isin (0.32)) Voor z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0.40 ^ c Omdat 7-3i echter in kwadrant 4 is, moeten we een positief
Hoe deel je (2i + 5) / (-7 i + 7) in trigonometrische vorm?
0.54 (cos (1.17) + isin (1.17)) Laten we ze splitsen in twee afzonderlijke complexe getallen om mee te beginnen, één is de teller, 2i + 5 en één de noemer, -7i + 7. We willen ze van lineaire (x + iy) vorm naar trigonometrische (r (costheta + isintheta) waar theta het argument is en r is de modulus. Voor 2i + 5 krijgen we r = sqrt (2 ^ 2 + 5 ^ 2 ) = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0.38 "rad" en voor -7i + 7 krijgen we r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 Uitwerken het argument voor de tweede is moeilijker, omdat het tussen -pi en pi moet zijn. We weten dat -7i + 7 in het vie
Hoe deel je (i + 2) / (9i + 14) in trigonometrische vorm?
0.134-0.015i Voor een complex getal z = a + bi kan het worden gerepresenteerd als z = r (costheta + isintheta) waarbij r = sqrt (a ^ 2 + b ^ 2) en theta = tan ^ -1 (b / a ) (2 + i) / (14 + 9i) = (sqrt (2 ^ 2 + 1 ^ 2) (cos (tan ^ -1 (1/2)) + isin (tan ^ -1 (1/2)) )) / (sqrt (14 ^ 2 + 9 ^ 2) (cos (tan ^ -1 (14/09)) + isin (tan ^ -1 (14/09)))) ~~ (sqrt5 (cos (0,46 ) + isin (0.46))) / (sqrt277 (cos (0.57) + isin (0.57))) Gegeven z_1 = r_1 (costheta_1 + isintheta_1) en z_2 = r_2 (costheta_2 + isintheta_2), z_1 / z_2 = r_1 / r_2 ( cos (theta_1-theta_2) + isin (theta_1-theta_2)) z_1 / z_2 = sqrt5 / sqrt277 (cos (0.46-0.57) + isin