Wat is de helling van een lijn die loodrecht staat op V (3, 2), W (8, 5)?

Wat is de helling van een lijn die loodrecht staat op V (3, 2), W (8, 5)?
Anonim

Antwoord:

Zie een oplossingsproces hieronder:

Uitleg:

De formule voor het vinden van de helling van een lijn is:

#m = (kleur (rood) (y_2) - kleur (blauw) (y_1)) / (kleur (rood) (x_2) - kleur (blauw) (x_1)) #

Waar # (kleur (blauw) (x_1), kleur (blauw) (y_1)) # en # (kleur (rood) (x_2), kleur (rood) (y_2)) # zijn twee punten op de lijn.

Vervanging van de waarden uit de punten in het probleem geeft:

#m = (kleur (rood) (5) - kleur (blauw) (2)) / (kleur (rood) (8) - kleur (blauw) (3)) = 3/5 #

Laten we de helling van een loodlijn noemen: #color (blauw) (m_p) #

De helling van een lijn loodrecht op een lijn met helling #color (rood) (m) # is de negatieve inverse, of:

#color (blauw) (m_p) = -1 / kleur (rood) (m) #

Vervanging van de helling voor de lijn in het probleem geeft:

#color (blauw) (m_p) = (-1) / kleur (rood) (3/5) = -5 / 3 #