Antwoord:
Uitleg:
De gegeven gegevens zijn de eindpunten
Los op voor het centrum
Centrum
Los nu de straal op
De standaardvorm van de vergelijking van de cirkel:
Center-Radius-formulier
God zegene … Ik hoop dat de uitleg nuttig is.
Wat is de omtrek van een 15-inch cirkel als de diameter van een cirkel recht evenredig is met de straal en een cirkel met een diameter van 2 inch heeft een omtrek van ongeveer 6,28 inch?
Ik geloof dat het eerste deel van de vraag verondersteld werd te zeggen dat de omtrek van een cirkel recht evenredig is met de diameter ervan. Die relatie is hoe we pi krijgen. We kennen de diameter en de omtrek van de kleinere cirkel, respectievelijk "2 inch" en "6.28 inch". Om de verhouding tussen de omtrek en de diameter te bepalen, delen we de omtrek door de diameter, "6.28 in" / "2 in" = "3.14", die veel op Pi lijkt. Nu we de proportie kennen, kunnen we de diameter van de grotere cirkel maal de verhouding vermenigvuldigen om de omtrek van de cirkel te berekenen. "
Je krijgt een cirkel B met een middelpunt (4, 3) en een punt op (10, 3) en een andere cirkel C waarvan het middelpunt (-3, -5) is en een punt op die cirkel is (1, -5) . Wat is de verhouding van cirkel B tot cirkel C?
3: 2 "of" 3/2 "we moeten de stralen van de cirkels berekenen en vergelijken" "de straal is de afstand van het centrum tot het punt" "op de cirkel" "centrum van B" = (4,3 ) "en punt is" = (10,3) "omdat de y-coördinaten beide 3 zijn, dan is de straal" "het verschil in de x-coördinaten" rArr "straal van B" = 10-4 = 6 "midden van C "= (- 3, -5)" en punt is "= (1, -5)" y-coördinaten zijn beide - 5 "rArr" radius van C "= 1 - (- 3) = 4" ratio " = (kleur (rood) "radius_B&qu
Punten (-9, 2) en (-5, 6) zijn eindpunten van de diameter van een cirkel. Wat is de lengte van de diameter? Wat is het middelpunt C van de cirkel? Gegeven het punt C dat u in deel (b) hebt gevonden, vermeldt u het punt symmetrisch ten opzichte van C rond de x-as
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) symmetrisch punt over x-as: (-7, -4) Gegeven: eindpunten van de diameter van een cirkel: (- 9, 2), (-5, 6) Gebruik de afstandsformule om de lengte van de diameter te vinden: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Gebruik de middelpuntformule om zoek het midden: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Gebruik de coördinaatregel voor reflectie over de x-as (x, y) -> (x, -y): (-7, 4) symmetrisch p