Antwoord:
Uitleg:
We kunnen een getallenlijn visualiseren waar we ons in een positie bevinden
Dus als we bewegen
Dus,
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (6, 7) en object B verplaatst naar (-1, 3) over 4 seconden, wat is de relatieve snelheid van object B vanuit het perspectief van object A?
Gebruik eerst de stelling van Pythagoras en gebruik dan de vergelijking d = vt Object A is verplaatst c = sqrt (6 ^ 2 + 7 ^ 2 = 9.22m Object B is verplaatst c = sqrt ((- 1) ^ 2 + 3 ^ 2 = 3.16m De snelheid van Object A is dan {9.22m} / {4s} = 2.31m / s De snelheid van Object B is dan {3.16m} / {4s} =. 79m / s Omdat deze objecten in tegengestelde richting bewegen , deze snelheden zullen toevoegen, zodat ze lijken te bewegen met 3,10 m / s van elkaar vandaan.
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (-2, 8) en object B verplaatst naar (-5, -6) over 4 seconden, wat is dan de relatieve snelheid van object B vanuit het perspectief van object A?
Vec v_ (AB) = sqrt 203/4 (eenheid) / s "verplaatsing tussen twee punten is:" Delta vec x = -5 - (- 2) = - 3 "eenheid" Delta vec y = -6-8 = - 14 "eenheid" Delta vec s = sqrt ((- 3) ^ 2 + (- 14) ^ 2)) Delta vec s = sqrt (9 + 194) = sqrt 203 vec v_ (AB) = (Delta vec's) / (Delta t) vec v_ (AB) = sqrt 203/4 (eenheid) / s
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (6, -2) en object B verplaatst naar (2, 9) over 5 s, wat is de relatieve snelheid van object B vanuit het perspectief van object A? Neem aan dat alle eenheden in meters zijn uitgedrukt.
V_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "afstand tussen het punt van A en B:" Delta s = sqrt (11² + 4 ^ 2) "" Delta s = sqrt (121 + 16) "" Delta s = sqrt137 m v_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "de perspectiefhoek wordt getoond in figuur" (alpha). "" tan alpha = 11/4