Voor de functie
De regel is:
Met andere woorden, we "lenen" de kracht van x en maken het de coëfficiënt van het derivaat, en trekken dan 1 af van het vermogen.
Zoals ik al zei, is het speciale geval waar n = 0. Dit betekent dat
We kunnen onze regel gebruiken en technisch gezien krijg het juiste antwoord:
Later zullen we echter op complicaties stuiten wanneer we de inverse van deze regel proberen te gebruiken.
Antwoord:
Hieronder staan de bewijzen voor elke getallen, maar alleen het bewijs voor alle gehele getallen gebruikt de basisvaardighedenset van de definitie van afgeleide producten. Het bewijs voor alle rantsoenen gebruikt de kettingregel en voor irrationals wordt impliciete differentiatie gebruikt.
Uitleg:
Dat gezegd zijnde, ik zal ze hier allemaal laten zien, zodat je het proces kunt begrijpen. Pas op dat het
Van
Als
Waar
Dat verdelen
We kunnen de eerste termijn uit de som halen
Als je de limiet neemt, gaat al het andere dat nog in de som is naar nul. Berekenen
Voor
Schakel de eerste termijn uit
Neem de limiet, waar
Voor rationals moeten we de kettingregel gebruiken. D.w.z.:
Dus dat weten
Als
Dus, met behulp van de kettingregel die we hebben
En last but not least, met behulp van impliciete differentiatie kunnen we bewijzen voor alle reële getallen, inclusief de irrationals.
Wat is de eerste afgeleide en tweede afgeleide van 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(de eerste afgeleide)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(de tweede afgeleide)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(de eerste afgeleide)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(de tweede afgeleide)"
Wat is de tweede afgeleide van x / (x-1) en de eerste afgeleide van 2 / x?
Vraag 1 Als f (x) = (g (x)) / (h (x)) en dan door de quotiëntregel f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Dus als f (x) = x / (x-1) dan is de eerste afgeleide f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) en de tweede afgeleide is f '' (x) = 2x ^ -3 Vraag 2 Als f (x) = 2 / x dit kan worden herschreven als f (x) = 2x ^ -1 en met behulp van standaardprocedures voor het nemen van de afgeleide f '(x) = -2x ^ -2 of, als je de voorkeur geeft aan f' (x) = - 2 / x ^ 2
Wat is de eerste afgeleide en tweede afgeleide van x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 om de eerste afgeleide te vinden, moeten we eenvoudigweg drie regels gebruiken: 1. Machtsregel d / dx x ^ n = nx ^ (n-1 ) 2. Constante regel d / dx (c) = 0 (waarbij c een geheel getal is en geen variabele) 3. Som- en verschilregel d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] de eerste afgeleide resulteert in: 4x ^ 3-0 wat vereenvoudigt tot 4x ^ 3 om de tweede afgeleide te vinden, we moeten de eerste afgeleide afleiden door opnieuw de machtsregel toe te passen die resulteert in : 12x ^ 3 je kunt doorgaan als je wilt: derde afgeleide = 36x ^ 2 vierde afgeleide