Het product van twee opeenvolgende gehele getallen is 47 meer dan het volgende opeenvolgende gehele getal. Wat zijn de twee gehele getallen?
-7 en -6 OF 7 en 8 Laat de gehele getallen x, x + 1 en x + 2 zijn. Dan x (x + 1) - 47 = x + 2 Oplossen voor x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 en 7 Terugkijkend werken beide resultaten, dus de twee gehele getallen zijn -7 en -6 of 7 en 8. Hopelijk is dit helpt!
Drie opeenvolgende gehele getallen kunnen worden weergegeven door n, n + 1 en n + 2. Als de som van drie opeenvolgende gehele getallen 57 is, wat zijn dan de gehele getallen?
18,19,20 Som is de optelling van het aantal, zodat de som van n, n + 1 en n + 2 kan worden weergegeven als, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 dus ons eerste gehele getal is 18 (n) onze tweede is 19, (18 + 1) en onze derde is 20, (18 + 2).
"Lena heeft 2 opeenvolgende gehele getallen.Ze merkt dat hun som gelijk is aan het verschil tussen hun vierkanten. Lena kiest nog eens 2 opeenvolgende gehele getallen en merkt hetzelfde op. Bewijs algebra dat dit geldt voor elke 2 opeenvolgende gehele getallen?
Zie de toelichting alstublieft. Bedenk dat de opeenvolgende gehele getallen met 1 verschillen. Dus als m één geheel getal is, moet het volgende gehele getal n + 1 zijn. De som van deze twee gehele getallen is n + (n + 1) = 2n + 1. Het verschil tussen hun vierkanten is (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zoals gewenst! Voel de vreugde van wiskunde.!