Hoe vereenvoudig je (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Hoe vereenvoudig je (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

Antwoord:

Enorme wiskundige opmaak …

Uitleg:

#color (blauw) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1))) / (sqrt (a 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) #

# = Kleur (rood) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) #

# = Kleur (blauw) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) #

# = kleur (rood) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) xx (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / sqrt (a + 1) #

# = kleur (blauw) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1))) xx (cancel ((sqrt (a + 1))) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / cancelsqrt (a + 1)) #

# = kleur (rood) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = kleur (blauw) (((+ sqrt (a + 1) cdot sqrt (a-1)) / cancel (sqrt (a-1))) xx ((sqrt (a + 1) cdot cancel ((sqrt (a-1)))) / kleur (rood) (annuleren (kleur (groen) ((sqrt (a-1) -sqrt (a + 1))))) xx sqrt (a-1) cdot-kleur (rood) (kleur annuleren (groen) ((sqrt (a-1) -sqrt (a + 1))) #

# = kleur (rood) (ul (bar (| kleur (blauw) ((1 + sqrt (a + 1) cdot sqrt (a-1)) cdot (sqrt ((a + 1) (a-1)))) | #

Antwoord:

#sqrt (a ^ 2-1) + a ^ 2-1 #

Uitleg:

Om de zaken enorm te vereenvoudigen zullen we gebruiken # U ^ 2 = a + 1 # en # V ^ 2 = a-1 #, wat ons geeft:

# (V ^ -1 + u) / (u ^ -1-v ^ -1) * (uv ^ 2-vu ^ 2) / u = ((v ^ -1 + u) (uv ^ 2- ^ vu 2)) / (u (u ^ -1 ^ -1-v)) = (uv-u ^ 2 + (uv) ^ 2-vu ^ 3) / (1-uv ^ -1) = (uv (1 + uv) -u ^ 2 (1 + uv)) / ((vu) / v) = (uv (1 + uv) (vu)) / (vu) = uv (1 + uv) #

#uv (1 + uv) = + uv u ^ 2v ^ 2 = sqrt (a-1) sqrt (a + 1) + (a-1) (a + 1) = sqrt (a ^ 2-1) + een ^ 2-1 #