Definieer deze functies:
Dan:
Antwoord:
Er is meer dan één manier om dit te doen.
Uitleg:
Adrian D heeft één antwoord gegeven, hier zijn er nog twee:
Laat
Nu
Het is misschien makkelijker om na te denken over als we gaven
Dus dat zien we
Zo
Nog een antwoord is te laten
Dus laat
Te krijgen
Dus laat
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Het gewicht van een nikkel is 80% van het gewicht van een kwart. Als een nikkel 5 gram weegt, hoeveel weegt een kwart dan? Een dubbeltje weegt 50% zoveel als een nikkel. Wat is het gewicht van een dubbeltje?
Gewicht van een kwart = 6,25 gram Gewicht van een dubbeltje = 2,5 gram Het gewicht van een nikkel is 80% gewicht van een kwart of Het gewicht van een nikkel is 5 gram of een gewicht van een kwart = 5 / 0,8 = 6,25 gram --- ---------- Ans1 Gewicht van een dubbeltje = 50% = 1/2 (gewicht van het nikkel) = 5/2 = 2,5 gram ------------- Ans2
Twee parallelle koorden van een cirkel met lengten van 8 en 10 dienen als basis van een trapezium ingeschreven in de cirkel. Als de lengte van een straal van de cirkel 12 is, wat is dan het grootst mogelijke oppervlak van een dergelijke beschreven ingeschreven trapezium?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Overweeg Fign. 1 en 2 Schematisch kunnen we een parallellogram ABCD in een cirkel plaatsen, en op voorwaarde dat zijden AB en CD akkoorden zijn van de cirkels, op de manier van figuur 1 of figuur 2. De voorwaarde dat de zijden AB en CD moeten zijn akkoorden van de cirkel impliceert dat de ingeschreven trapezoïde een gelijkbenige moet zijn omdat de diagonalen van de trapezoïde (AC en CD) gelijk zijn omdat A hat BD = B hat AC = B hatD C = A hat CD en de lijn loodrecht op AB en CD passerend door het midden E doorsnijdt deze akkoorden (dit betekent dat AF = BF en CG = DG en