Antwoord:
Uitleg:
Versimpelen
In ons geval kunnen we op de volgende manier beginnen:
Omdat we geen nummers hebben, kunnen we verder verdelen welke een ander aantal oplevert dan
Een paar getallen telt als één getal, namelijk de
Zo kunnen we nu schrijven
Meer voorbeelden:
(1)
We kunnen geen meer deelbare factoren vinden en we hebben zeker geen paar cijfers, dus we stoppen hier en noemen het niet vereenvoudig. Het enige echte antwoord is
(2)
We hebben een paar gevonden, zodat we deze kunnen vereenvoudigen:
(3)
We gaan op dezelfde manier te werk en schrijven
Wat is [5 (vierkantswortel van 5) + 3 (vierkantswortel van 7)] / [4 (vierkantswortel van 7) - 3 (vierkantswortel van 5)]?
(159 + 29sqrt (35)) / 47 kleur (wit) ("XXXXXXXX") aangenomen dat ik geen rekenfouten heb gemaakt (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Rationaliseer de noemer door te vermenigvuldigen met het geconjugeerde: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Wat is de vereenvoudigde vorm van vierkantswortel van 10 - vierkantswortel van 5 over vierkantswortel van 10 + vierkantswortel van 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) kleur (wit) ("XXX") = annuleren (sqrt (5)) / annuleren (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) kleur (wit) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) kleur (wit) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) kleur (wit) ("XXX") = (2-2sqrt2 + 1) / (2-1) kleur (wit) ( "XXX") = 3-2sqrt (2)
Wat is de vierkantswortel van 7 + vierkantswortel van 7 ^ 2 + vierkantswortel van 7 ^ 3 + vierkantswortel van 7 ^ 4 + vierkantswortel van 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Het eerste wat we kunnen doen is de wortels annuleren met de wortels met de even krachten. Omdat: sqrt (x ^ 2) = x en sqrt (x ^ 4) = x ^ 2 voor elk getal, kunnen we alleen maar zeggen dat sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 herschreven worden als 7 ^ 2 * 7, en die 7 ^ 2 kan uit de wortel komen! Hetzelfde is van toepassing op 7 ^ 5 maar het is herschreven als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7