Antwoord:
Uitleg:
Laten we zeggen dat ons eerste nummer is
waarbij de blauwe term het eerste getal voorstelt en de groene term de tweede term.
We kunnen deze combineren om te krijgen
Welke kan worden vereenvoudigd
Dit vertegenwoordigt het eerste nummer. De tweede wordt gegeven door
Controleren,
Ik hoop dat dit helpt!
Het product van twee opeenvolgende even gehele getallen is 24. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen. Antwoord?
De twee opeenvolgende even gehele getallen: (4,6) of (-6, -4) Laten, kleur (rood) (n en n-2 zijn de twee opeenvolgende even gehele getallen, waar kleur (rood) (n inZZ Product van n en n-2 is 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 Nu, [(-6) + 4 = -2 en (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 of n + 4 = 0 ... tot [n inZZ] => kleur (rood) (n = 6 of n = -4 (i) kleur (rood) (n = 6) => kleur (rood) (n-2) = 6-2 = kleur (rood) (4) Dus, de twee opeenvolgende even gehele getallen: (4,6) (ii)) kleur (rood) (n = -4) => kleur (rood) (n-2) = -4-2 = kleur (rood) (- 6) Dus, de
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De formule kennen tot de som van de N-getallen a) wat is de som van de eerste N opeenvolgende blokhele getallen, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Som van de eerste N opeenvolgende kubieke gehele getallen Sigma_ (k = 1) ^ N k ^ 3?
Voor S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 We hebben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 oplossing voor sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni maar sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3