De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
Hoe bereken je de vierde afgeleide van f (x) = 2x ^ 4 + 3sin2x + (2x + 1) ^ 4?
Y '' '' = 432 + 48sin (2x) Toepassing van de kettingregel maakt dit probleem eenvoudig, hoewel het nog steeds wat beenwerk vereist om tot het antwoord te komen: y = 2x ^ 4 + 3sin (2x) + (2x + 1) ^ 4 y '= 8x ^ 3 + 6cos (2x) +8 (2x + 1) ^ 3 y' '= 24x ^ 2 -12sin (2x) +48 (2x + 1) ^ 2 y' '' = 48x - 24cos (2x) +192 (2x + 1) = 432x - 24cos (2x) + 192 Merk op dat de laatste stap ons in staat stelde om de vergelijking substantieel te vereenvoudigen, waardoor het uiteindelijke derivaat veel gemakkelijker wordt: y '' '' = 432 + 48sin ( 2x)
Hoe de vierde afgeleide van cos (x ^ 2) te vinden?
Zie het antwoord hieronder: