Wat is de standaardvorm van de vergelijking van een cirkel met met het centrum (3,0) en die door het punt (5,4) gaat?
Ik vond: x ^ 2 + y ^ 2-6x-11 = 0 Kijk eens:
Schrijf een vergelijking in punt-hellingsvorm van de lijn die door het punt gaat (-3, 0) en heeft een helling van -1/3?
Zie een oplossingsprocedure hieronder: De punthellingsvorm van een lineaire vergelijking is: (y - kleur (blauw) (y_1)) = kleur (rood) (m) (x - kleur (blauw) (x_1)) Waar (kleur (blauw) (x_1), kleur (blauw) (y_1)) is een punt op de lijn en kleur (rood) (m) is de helling. Vervanging van de waarden van het punt in het probleem en de helling die in het probleem wordt geboden, geeft: (y - kleur (blauw) (0)) = kleur (rood) (- 1/3) (x - kleur (blauw) (- 3 )) (y - kleur (blauw) (0)) = kleur (rood) (- 1/3) (x + kleur (blauw) (3)) Of y = kleur (rood) (- 1/3) (x + kleur (blauw) (3))
Schrijf de hellings-interceptievorm van de vergelijking van de lijn door het gegeven punt met de gegeven helling? door: (3, -5), helling = 0
Een helling van nul betekent een horizontale lijn. Kortom, een helling van nul is een horizontale lijn. Het punt dat u krijgt, geeft aan welk y-punt erin wordt gepasseerd. Aangezien het y-punt -5 is, is uw vergelijking: y = -5