Hoe evalueer je cos (pi / 8)?

Hoe evalueer je cos (pi / 8)?
Anonim

Antwoord:

#cos (pi / 8) = sqrt (1/2 + sqrt (2) / 4) #

Uitleg:

# "Gebruik de formule met dubbele hoek voor cos (x):" #

#cos (2x) = 2 cos ^ 2 (x) - 1 #

# => cos (x) = pm sqrt ((1 + cos (2x)) / 2) #

# "Vul nu x =" pi / 8 # in

# => cos (pi / 8) = pm sqrt ((1 + cos (pi / 4)) / 2) #

# => cos (pi / 8) = sqrt ((1 + sqrt (2) / 2) / 2) #

# => cos (pi / 8) = sqrt (1/2 + sqrt (2) / 4) #

# "Opmerkingen:" #

# "1)" cos (pi / 4) = sin (pi / 4) = sqrt (2) / 2 "is een bekende waarde" #

# "omdat" sin (x) = cos (pi / 2-x), "so" #

#sin (pi / 4) = cos (pi / 4) "en" sin ^ 2 (x) + cos ^ 2 (x) = 1 #

# => 2 cos ^ 2 (pi / 4) = 1 => cos (pi / 4) = 1 / sqrt (2) = sqrt (2) /2.#

# "2) omdat" pi / 8 "in het eerste kwadrant ligt," cos (pi / 8)> 0 ", dus" #

# "we moeten de oplossing nemen met het + -teken." #