Antwoord:
De helling zal nul zijn en deze zal van de vorm zijn
Uitleg:
Helling is niet gedefinieerd voor een lijn die loodrecht staat op
Vandaar dat een lijn loodrecht op deze lijn evenwijdig zou zijn aan
de helling zal nul zijn en deze zal van de vorm zijn
De helling van een horizontale lijn is nul, maar waarom is de helling van een verticale lijn niet gedefinieerd (niet nul)?
Het is net als het verschil tussen 0/1 en 1/0. 0/1 = 0 maar 1/0 is niet gedefinieerd. De helling m van een lijn die door twee punten gaat (x_1, y_1) en (x_2, y_2) wordt gegeven door de formule: m = (Delta y) / (Delta x) = (y_2 - y_1) / (x_2 - x_1) Als y_1 = y_2 en x_1! = X_2 dan is de lijn horizontaal: Delta y = 0, Delta x! = 0 en m = 0 / (x_2 - x_1) = 0 Als x_1 = x_2 en y_1! = Y_2 dan is de lijn verticaal: Delta y! = 0, Delta x = 0 en m = (y_2 - y_1) / 0 is niet gedefinieerd.
De helling van een lijn is -1/3. Hoe vind je de helling van een lijn die loodrecht op deze lijn staat?
"loodrechte helling" = 3> "Gegeven een lijn met helling m de helling van een lijn" "loodrecht daarop" m_ (kleur (rood) "loodrecht") = - 1 / m RECHTM _ ("loodrecht") = - 1 / (- 1/3) = 3
De helling van een lijn is -3. Wat is de helling van een lijn die loodrecht op deze lijn staat.
1/3. Lijnen met hellingen m_1 en m_2 zijn bot ten opzichte van elkaar iff m_1 * m_2 = -1. Vandaar dat vereist. helling 1/3.