Antwoord:
Uitleg:
Alsof
dus door deze formule te gebruiken en indien
Antwoord:
Uitleg:
Wij hebben
We kunnen de kettingregel toepassen, die dat voor een functie bepaalt
Hier,
Maar hier,
Zo
Nu hebben we:
De grafiek van de functie f (x) = (x + 2) (x + 6) wordt hieronder getoond. Welke verklaring over de functie is waar? De functie is positief voor alle reële waarden van x waarbij x> -4. De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De nullen van een functie f (x) zijn 3 en 4, terwijl de nullen van een tweede functie g (x) 3 en 7 zijn. Wat zijn de nul (n) van de functie y = f (x) / g (x )?
Alleen nul van y = f (x) / g (x) is 4. Als nullen van een functie f (x) 3 en 4 zijn, betekent dit (x-3) en (x-4) factoren van f (x ). Verder zijn nullen van een tweede functie g (x) 3 en 7, wat betekent (x-3) en (x-7) zijn factoren van f (x). Dit betekent in de functie y = f (x) / g (x), hoewel (x-3) de noemer g moet annuleren (x) = 0 is niet gedefinieerd, wanneer x = 3. Het is ook niet gedefinieerd wanneer x = 7. Daarom hebben we een gat op x = 3. en alleen nul van y = f (x) / g (x) is 4.
Wat is de afgeleide van deze functie y = sin x (e ^ x)?
Dy / dx = e ^ x (cosx + sinx) dy / dx = cosx xx e ^ x + e ^ x xx sinx dy / dx = e ^ x (cosx + sinx)