Antwoord:
Het massapercentage van
Uitleg:
Stap 1. Schrijf een vergelijking voor de reactie
Een gedeeltelijke vergelijking voor de reactie is
We weten niet wat de andere reactanten en producten zijn.
Dat maakt echter niet uit zolang er maar atomen van zijn
Stap 2. Bereken de mollen van
Stap 3. Bereken de mollen van
Stap 4. Bereken de massa van
Stap 5. Bereken het massapercentage van
Ik hoop dat dat helpt!
Het volume van een ingesloten gas (bij een constante druk) varieert direct als de absolute temperatuur. Als de druk van een monster van 3,46-L neongas bij 302 ° K 0,926 atm is, wat zou het volume dan bij een temperatuur van 338 ° K zijn als de druk niet verandert?
3.87L Interessant praktisch (en heel gebruikelijk) chemieprobleem voor een algebraïsch voorbeeld! Deze geeft niet de werkelijke Ideal Gas Law-vergelijking, maar laat zien hoe een deel ervan (Charles 'Law) is afgeleid van de experimentele gegevens. Algebraïsch wordt ons verteld dat de snelheid (helling van de lijn) constant is ten opzichte van de absolute temperatuur (de onafhankelijke variabele, meestal de x-as) en het volume (afhankelijke variabele of y-as). Het bepalen van een constante druk is noodzakelijk voor de juistheid, omdat het ook in werkelijkheid bij de gasvergelijkingen is betrokken. Ook kan de f
Julie gooit een keer een eerlijke rode dobbelsteen en een keer een eerlijke blauwe dobbelsteen. Hoe bereken je de kans dat Julie een zes krijgt op zowel de rode dobbelsteen als de blauwe dobbelsteen. Ten tweede, bereken de kans dat Julie minstens één zes krijgt?
P ("Two sixes") = 1/36 P ("Tenminste one six") = 11/36 De kans om een zes te krijgen wanneer u een eerlijke dobbelsteen gooit is 1/6. De vermenigvuldigingsregel voor onafhankelijke gebeurtenissen A en B is P (AnnB) = P (A) * P (B) Voor het eerste geval krijgt gebeurtenis A een zes op de rode dobbelsteen en gebeurtenis B krijgt een zes op de blauwe dobbelsteen . P (AnnB) = 1/6 * 1/6 = 1/36 Voor het tweede geval willen we eerst de waarschijnlijkheid van het krijgen van geen zessen overwegen. De kans dat een enkele dobbelsteen niet zes werpt is duidelijk 5/6 dus met behulp van de vermenigvuldigingsregel:
Wat is de halfwaardetijd van de stof als een monster van een radioactieve stof na een jaar verviel tot 97,5% van zijn oorspronkelijke hoeveelheid? (b) Hoe lang zou het monster moeten vervallen tot 80% van zijn oorspronkelijke hoeveelheid? _years ??
(een). t_ (1/2) = 27.39 "a" (b). t = 8.82 "a" N_t = N_0e ^ (- lambda t) N_t = 97.5 N_0 = 100 t = 1 So: 97.5 = 100e ^ (- lambda.1) e ^ (- lambda) = (97.5) / (100) e ^ (lambda) = (100) / (97.5) lne ^ (lambda) = ln ((100) / (97.5)) lambda = ln ((100) / (97.5)) lambda = ln (1.0256) = 0.0253 " / a "t _ ((1) / (2)) = 0.693 / lambda t _ ((1) / (2)) = 0.693 / 0.0253 = kleur (rood) (27.39" a ") Deel (b): N_t = 80 N_0 = 100 So: 80 = 100e ^ (- 0.0253t) 80/100 = e ^ (- 0.0235t) 100/80 = e ^ (0.0253t) = 1.25 Natuurlijke logboeken van beide zijden nemen: ln (1.25) = 0.0253 t 0.223 = 0.0253tt = 0.2