Antwoord:
Zie Bewijs in Toelichting.
Uitleg:
Nu, overweeg
Vandaar het bewijs.
Twee tegenovergestelde zijden van een parallellogram hebben lengtes van 3. Als één hoek van het parallellogram een hoek van pi / 12 heeft en het gebied van het parallellogram 14 is, hoe lang zijn dan de andere twee zijden?
Veronderstellend een beetje van fundamentele Trigonometry ... Laat x de (gemeenschappelijke) lengte van elke onbekende kant zijn. Als b = 3 de maat is van de basis van het parallellogram, laat h de verticale hoogte ervan zijn. Het gebied van het parallellogram is bh = 14 Omdat b bekend is, hebben we h = 14/3. Van basis Trig, sin (pi / 12) = h / x. We kunnen de exacte waarde van de sinus vinden door een formule met een halve of een andere hoek te gebruiken. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dus ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2)
Bewijzen vector dat diagonalen van een ruit elkaar loodrecht doorsnijden?
Laat ABCD een ruit zijn. Dit betekent AB = BC = CD = DA. Omdat ruit een parallellogram is. Door eigenschappen van het parallellogram doorsnijden de diafragma's DBandAC elkaar op hun kruispunt. E Nu, als de zijden DAandDC worden beschouwd als twee vectoren die werken bij D, dan zal de diagonale DB het resultaat van hen vertegenwoordigen. Dus vec (DB) = vec (DA) + vec (DC) Evenzo vec (CA) = vec (CB) -vec (AB) = vec (DA) -vec (DC) Dus vec (DB) * vec (CA) = vec (DA) * vec (DA) -vec (DC) * vec (DC) = absvec (DA) ^ 2-absvec (DC) ^ 2 = 0 DA = DC Daarom staan diagonalen loodrecht op elkaar.
Begin met DeltaOAU, met bar (OA) = a, verleng bar (OU) op een zodanige manier dat bar (UB) = b, met B on bar (OU). Construeer een evenwijdige lijn met staaf (UA) elkaar snijdende bar (OA) bij C. Laat dat zien, bar (AC) = ab?
Zie uitleg. Trek een lijn UD, evenwijdig aan AC, zoals weergegeven in de afbeelding. => UD = AC DeltaOAU en DeltaUDB zijn vergelijkbaar, => (UD) / (UB) = (OA) / (OU) => (UD) / b = a / 1 => UD = ab => AC = ab " (bewezen)"