Nu als de zijkanten
Zo
evenzo
Zo
Sinds
Vandaar dat diagonalen loodrecht op elkaar staan.
De coördinaten voor een ruit worden gegeven als (2a, 0) (0, 2b), (-2a, 0) en (0.-2b). Hoe schrijf je een plan om te bewijzen dat de middelpunten van de zijkanten van een ruit een rechthoek bepalen met behulp van coördinaatgeometrie?
Zie onder. Laat de punten van de ruit zijn A (2a, 0), B (0, 2b), C (-2a, 0) en D (0.-2b). Laat de middelpunten van AB P zijn en de coördinaten ervan zijn ((2a + 0) / 2, (0 + 2b) / 2), d.w.z. (a, b). Evenzo is het middelpunt van BC Q (-a, b); middelpunt van CD is R (-a, -b) en het middelpunt van DA is S (a, -b). Het is duidelijk dat, terwijl P in Q1 ligt (eerste kwadrant), Q in Q2 ligt, R in Q3 ligt en S in Q4 ligt. Verder zijn P en Q weerspiegeling van elkaar in de y-as, zijn Q en R elkaar in de x-as, zijn R en S reflectie van elkaar in de y-as en zijn S en P in elkaars weerkaatsing in x-as. Vandaar dat PQRS of middel
Bewijzen dat de diagonalen van een parallellogram elkaar doorsnijden, d.w.z. bar (AE) = bar (EC) en bar (BE) = bar (ED)?
Zie Bewijs in Toelichting. ABCD is een parallellogram:. AB || DC, en, AB = DE ................ (1):. m / _ABE = m / _EDC, m / _BAE = m / _ECD .......... (2). Overweeg nu DeltaABE en DeltaCDE. Vanwege (1) en (2), DeltaABE ~ = DeltaCDE. :. AE = EC, en, BE = ED # Vandaar het bewijs.
Twee ruiten hebben zijden met een lengte van 4. Als een ruit een hoek heeft met een hoek van pi / 12 en de andere een hoek heeft met een hoek van (5pi) / 12, wat is het verschil tussen de gebieden van de ruiten?
Verschil in Oppervlakte = 11.31372 "" vierkante eenheden Om het gebied van een ruit te berekenen Gebruik de formule Gebied = s ^ 2 * sin theta "" waar s = zijkant van de ruit en theta = hoek tussen twee zijden Bereken het gebied van ruit 1. Area = 4 * 4 * sin ((5pi) / 12) = 16 * sin 75^@=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~