Antwoord:
Gehele getallen zijn
Uitleg:
Laat de gehele getallen zijn
Som van gehele getallen is 16
Eén gehele getallen is 4 meer dan andere
in vergelijking 1
en
Het product van twee opeenvolgende gehele getallen is 47 meer dan het volgende opeenvolgende gehele getal. Wat zijn de twee gehele getallen?
-7 en -6 OF 7 en 8 Laat de gehele getallen x, x + 1 en x + 2 zijn. Dan x (x + 1) - 47 = x + 2 Oplossen voor x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 en 7 Terugkijkend werken beide resultaten, dus de twee gehele getallen zijn -7 en -6 of 7 en 8. Hopelijk is dit helpt!
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van vier opeenvolgende oneven gehele getallen is drie meer dan vijf keer de kleinste van de gehele getallen, wat zijn de gehele getallen?
N -> {9,11,13,15} kleur (blauw) ("Building the equations") Laat de eerste oneven term zijn n Laat de som van alle termen zijn s dan term 1-> n termijn 2-> n +2 term 3-> n + 4 term 4-> n + 6 Dan s = 4n + 12 ............................ ..... (1) Gegeven dat s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~ Vergelijking (1) tot (2) waardoor de variabele s 4n + 12 = s = 3 + 5n Verzamelen als termen 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ Dus de termen zijn: term 1-> n-> 9 term 2-> n + 2-> 11