Om het eerste feit te bewijzen, moet je in essentie laten zien dat de toenemende functie
Laat
Om het tweede feit te bewijzen, laat
De grafiek van de functie f (x) = (x + 2) (x + 6) wordt hieronder getoond. Welke verklaring over de functie is waar? De functie is positief voor alle reële waarden van x waarbij x> -4. De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in