Antwoord:
Uitleg:
De formule voor het vinden van het gebied van een vierkant is A = s ^ 2. Hoe transformeer je deze formule om een formule te vinden voor de lengte van een zijde van een vierkant met een gebied A?
S = sqrtA Gebruik dezelfde formule en verander het onderwerp dat u wilt zijn. Met andere woorden, isoleer s. Meestal is het proces als volgt: begin met het kennen van de lengte van de zijkant. "side" rarr "square the side" rarr "Area" Doe precies het tegenovergestelde: lees van rechts naar links "side" larr "vind de vierkantswortel" larr "Area" In Maths: s ^ 2 = A s = sqrtA
De grafiek van een kwadratische functie heeft x-onderschept -2 en 7/2, hoe schrijf je een kwadratische vergelijking die deze wortels heeft?
Zoek f (x) = ax ^ 2 + bx + c = 0 met de 2 echte wortels: x1 = -2 en x2 = 7/2. Gegeven 2 echte wortels c1 / a1 en c2 / a2 van een kwadratische vergelijking ax ^ 2 + bx + c = 0, zijn er 3 relaties: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Diagonale som). In dit voorbeeld zijn de 2 echte wortels: c1 / a1 = -2/1 en c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. De kwadratische vergelijking is: Antwoord: 2x ^ 2 - 3x - 14 = 0 (1) Controle: vind de 2 echte wortels van (1) door de nieuwe AC-methode. Geconverteerde vergelijking: x ^ 2 - 3x - 28 = 0 (2). Los vergelijking (2) op. Wortels hebben verschill
Ik begrijp niet echt hoe ik dit moet doen, kan iemand het stap voor stap doen ?: De exponentiële vervalgrafiek toont de verwachte afschrijving voor een nieuwe boot, die voor 3500, verspreid over 10 jaar, verkoopt. -Schrijf een exponentiële functie voor de grafiek -Gebruik de functie om te vinden
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0.2824326201x) f (x) = 3500e ^ (- 0.28x) Ik kan alleen de eerste vraag sinds de rest was afgesneden. We hebben a = a_0e ^ (- bx) Gebaseerd op de grafiek die we lijken te hebben (3,1500) 1500 = 3500e ^ (- 3b) e ^ (- 3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201~~-0.28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0.2824326201x) f (x) = 3500e ^ (- 0.28x)