Plaats in
Denk aan de eenheidscirkel en speciale driehoeken.
Vervang in die waarden.
De positievector van A heeft de Cartesiaanse coördinaten (20,30,50). De positievector van B heeft de Cartesiaanse coördinaten (10,40,90). Wat zijn de coördinaten van de positievector van A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Wat is het Cartesiaanse equivalent van poolcoördinaten (sqrt97, 66 ^ circ)?
Kleur (kastanjebruin) ("Cartesiaans equivalent" (x, y) = (4,9) r, theta = sqrt97, 66 ^ @ x = r cos theta = sqrt97 cos 66 ~~ 4 y = r sin theta = sqrt97 sin 66 ~~ 9
Hoe converteer je de Cartesiaanse coördinaten (10, 10) naar poolcoördinaten?
Cartesiaans: (10; 10) Polair: (10sqrt2; pi / 4) Het probleem wordt weergegeven door de onderstaande grafiek: In een 2D-ruimte wordt een punt gevonden met twee coördinaten: de cartesische coördinaten zijn verticale en horizontale posities (x; y ). De poolcoördinaten zijn afstand van oorsprong en helling met horizontaal (R, alpha). De drie vectoren vecx, vecy en vecR creëren een rechthoekige driehoek waarin u de stelling van pythagoras en de trigonometrische eigenschappen kunt toepassen. Zo vindt u: R = sqrt (x ^ 2 + y ^ 2) alpha = cos ^ (- 1) (x / R) = sin ^ (- 1) (y / R) In uw geval is dat: R = sqrt (10