Antwoord:
2
Uitleg:
om een breuk te delen die je zou vermenigvuldigen met zijn inverse.
annuleer de 5s en je blijft vermenigvuldigen
Antwoord:
Uitleg:
Laten we aannemen dat het onbekende aantal is
Volgens de vraag hebben we:
Ik hoop dat dit helpt!:)
Het getal van een afgelopen jaar is gedeeld door 2 en het resultaat is ondersteboven gekeerd en gedeeld door 3, dan is het met de rechterkant naar boven gelaten en gedeeld door 2. Vervolgens zijn de cijfers in het resultaat omgekeerd om 13 te maken. Wat is het afgelopen jaar?
Color (red) (1962) Hier zijn de beschreven stappen: {: ("jaar", kleur (wit) ("xxx"), rarr ["result" 0]), (["result" 0] div 2 ,, rarr ["result" 1]), (["result" 1] "ondersteboven gekeerd" ,, rarr ["result" 2]), (["result" 2] "gedeeld door" 3,, rarr ["result "3]), ((" links naar rechts boven ") ,, (" geen verandering ")), ([" resultaat "3] div 2,, rarr [" result "4]), ([" result " 4] "digits reversed" ,, rarr ["result" 5] = 13):} Working backward: c
Een getal vermenigvuldigen met 4/5 en dan delen door 2/5 is hetzelfde als vermenigvuldigen met welk getal?
............. Is hetzelfde als mulitplying vóór 8/25 ...... We beginnen met x, en mulitply x met 4/5: x xx4 / 5 = (4x) / 5, en vermenigvuldig dan (4x) / 5 met 2/5: (4x) / 5xx2 / 5 = (8x) / 25 En de factor is 8/25.
Wanneer een polynoom wordt gedeeld door (x + 2), is de rest -19. Wanneer hetzelfde polynoom wordt gedeeld door (x-1), is de rest 2, hoe bepaal je de rest wanneer het polynoom wordt gedeeld door (x + 2) (x-1)?
We weten dat f (1) = 2 en f (-2) = - 19 van de Restantstelling. Vind nu de rest van polynoom f (x) wanneer gedeeld door (x-1) (x + 2). De rest zal zijn van de vorm Ax + B, omdat het de rest is na deling door een kwadratische vorm. We kunnen nu de deler vermenigvuldigen maal het quotiënt Q ... f (x) = Q (x-1) (x + 2) + Ax + B Volgende, voeg 1 in en -2 voor x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Oplossen van deze twee vergelijkingen, we krijgen A = 7 en B = -5 Rest = Ax + B = 7x-5