Antwoord:
Uitleg:
Definieer eerst de twee cijfers.
Laat het kleinere getal x zijn, dan is het grotere getal (16-x).
de cijfers zijn 5 en 11.
Controleren:
Antwoord:
De twee cijfers zijn 11 en 5
Het product is
Uitleg:
Laat het eerste nummer zijn
Laat het tweede nummer zijn
Het optellen van de twee vergelijkingen geeft
Verdeel beide kanten door 2
'…………………………………………………………………………………….
Vervang vergelijking (3) in een van (1) of (2)
Ik koos vergelijking (1)
Trek 11 van beide kanten af
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Artikel
Het verschil van twee getallen is 3 en hun product is 9. Als de som van hun vierkant 8 is, wat is het verschil tussen hun kubussen?
51 Gegeven: xy = 3 xy = 9 x ^ 2 + y ^ 2 = 8 Dus, x ^ 3-y ^ 3 = (xy) (x ^ 2 + xy + y ^ 2) = (xy) (x ^ 2 + y ^ 2 + xy) Sluit de gewenste waarden in. = 3 * (8 + 9) = 3 * 17 = 51
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van twee getallen is 21. Het verschil van de twee getallen is 19. Wat zijn de twee getallen?
X = 20 en y = 1 De eerste vergelijking kan worden geschreven als x + y = 21 De tweede vergelijking kan worden geschreven als x - y = 19 Het oplossen van de tweede vergelijking voor x geeft: x = 19 + y Vervangen van deze x in de eerste vergelijking geeft: (19 + y) + y = 21 19 + 2y = 21 2y = 21 - 19 2y = 2 y = 1 Het vervangen van deze y in de tweede vergelijking geeft: x - 1 = 19 x = 20