Antwoord:
Directe variatie in het echte leven.
Uitleg:
-
Een auto reist
#X# uren met een snelheid van# "60 km / h" # #-># de afstand:#y = 60x # -
Een man koopt
#X# stenen die kosten#$1.50# elk#-># de kosten:#y = 1.50x # -
Er groeit een boom
#X# maanden door#1/2# meter elke maand#-># de groei:
#y = 1/2 x #
Het geordende paar (1,5, 6) is een oplossing van directe variatie, hoe schrijf je de vergelijking van directe variatie? Vertegenwoordigt inverse variatie. Vertegenwoordigt directe variatie. Vertegenwoordigt geen van beide.?
Als (x, y) een directe variatie-oplossing vertegenwoordigt, dan is y = m * x voor een bepaalde constante m Gegeven het paar (1.5.6) hebben we 6 = m * (1.5) rarr m = 4 en de directe-variatievergelijking is y = 4x Als (x, y) een inverse variatie-oplossing voorstelt dan y = m / x voor een bepaalde constante m Gegeven het paar (1.5.6) hebben we 6 = m / 1.5 rarr m = 9 en de inverse-variatievergelijking is y = 9 / x Elke vergelijking die niet kan worden herschreven als een van de bovenstaande, is geen directe of een omgekeerde variatierekening. Bijvoorbeeld, y = x + 2 is geen van beide.
Het geordende paar (2, 10), is een oplossing van een directe variatie, hoe schrijf je de vergelijking van directe variatie, dan grafiek je vergelijking en laat zien dat de helling van de lijn gelijk is aan de constante van variatie?
Y = 5x "gegeven" ypropx "dan" y = kxlarrcolor (blauw) "vergelijking voor directe variatie" "waarbij k de constante is van variatie" "om te vinden dat k het gegeven coördinaatpunt gebruikt" (2,10) y = kxrArrk = y / x = 10/2 = 5 "vergelijking is" kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (y = 5x) kleur (wit) (2/2) |))) y = 5x "heeft de vorm" y = mxlarrcolor (blauw) "m is de helling" rArry = 5x "is een rechte lijn die door de oorsprong loopt" "met helling m = 5" grafiek {5x [-10 , 10, -5, 5]}
Wat zijn enkele voorbeelden uit het echte leven van de stelling van Pythagoras?
Wanneer timmermannen een gegarandeerde rechte hoek willen construeren, kunnen ze een driehoek maken met zijden 3, 4 en 5 (eenheden). Volgens de stelling van Pythagoras is een driehoek gemaakt met deze lengtes altijd een rechthoekige driehoek, omdat 3 ^ 2 + 4 ^ 2 = 5 ^ 2. Als je de afstand tussen twee plaatsen wilt weten, maar je hebt alleen hun coördinaten (of hoeveel blokken uit elkaar ze zijn), zegt de stelling van Pythagoras dat het kwadraat van deze afstand gelijk is aan de som van de gekwadrateerde horizontale en verticale afstanden. d ^ 2 = (x_1 - x_2) ^ 2 + (y_1 - y_2) ^ 2 Zeg dat de ene plaats op (2,4) staat e