Antwoord:
Uitleg:
In de wiskunde is een functie een relatie tussen een reeks ingangen en een reeks toegestane uitgangen met de eigenschap dat elke invoer gerelateerd is aan precies één uitvoer (zie http://en.wikipedia.org/wiki/Function_%28mathematics%29 # cite_note-1 voor meer informatie).
In de meeste grafieken met een x-as en een y-as is er slechts één y-waarde voor elke x-waarde. Neem bijvoorbeeld
grafiek {y = x -10, 10, -5, 5}
Merk op dat als je de grafiek blijft volgen, de lijn altijd doorgaat door de
Echter,
EEN verticale lijntest wordt vaak het best gebruikt om een functie van een curve te bepalen. Gemeenschappelijke vergelijkingen zijn inverse trigonometrievergelijkingen zoals
Khan Academy heeft een goede serie over het begrijpen van functies in de diepte:
De functie f (x) = 1 / (1-x) op RR {0, 1} heeft de (nogal leuke) eigenschap die f (f (f (x))) = x is. Is er een eenvoudig voorbeeld van een functie g (x) zodat g (g (g (g (x)))) = x maar g (g (x))! = X?
De functie: g (x) = 1 / x wanneer x in (0, 1) uu (-oo, -1) g (x) = -x wanneer x in (-1, 0) uu (1, oo) werkt , maar is niet zo eenvoudig als f (x) = 1 / (1-x) We kunnen RR {-1, 0, 1} opsplitsen in vier open intervallen (-oo, -1), (-1, 0) , (0, 1) en (1, oo) en definieer g (x) om cyclisch tussen de intervallen in te delen. Dit is een oplossing, maar zijn er eenvoudiger?
Wat is een voorbeeld van een functie die een situatie beschrijft?
Overweeg een taxi en het tarief dat je moet betalen om van A street naar B avenue te gaan en noem het f. f zal afhangen van verschillende dingen, maar om ons leven gemakkelijker te maken laten we aannemen dat dit alleen afhangt van de afstand d (in km). Je kunt dus schrijven dat 'tarief afhankelijk is van de afstand' of in wiskundige taal: f (d). Vreemd is dat als je in de taxi zit, de meter al een bepaald bedrag te zien krijgt ... dit is een vast bedrag dat je moet betalen, ongeacht de afstand, laten we zeggen, 2 $. Nu moet voor elke afgelegde km de taxichauffeur benzine betalen, onderhoud van het voertuig, belast
Wat is een voorbeeld van een ecosysteem met een lage diversiteit en een met een hoge diversiteit?
Voorbeeld van een ecosysteem met een lage biodiversiteit is absoluut een woestijn. Dan zijn er koude woestijnen in Antarctica en het Gobi-bekken van Centraal-Azië, waar de biodiversiteit minimaal is. Voorbeeld van een ecosysteem met een hoge biodiversiteit is tropisch regenwoud zoals gezien in het Amazonegebied in Zuid-Amerika. Dergelijke bossen bloeien ook in delen van Centraal-Afrika en ook op eilanden in Indonesië. In het mariene milieu zijn koraalriffen een voorbeeld van aquatische ecosystemen met een hoge biodiversiteit. Lees ook dit antwoord om meer te weten.