Antwoord:
Uitleg:
Omdat we de helling en een punt op de lijn krijgen, kunnen we de vergelijking gebruiken voor de punthellingsvorm van de vergelijking van een lijn.
Waar
Voor deze situatie
Sluit de waarden in
Vereenvoudig de tekens
Gebruik distributieve eigenschap om de haakjes te verwijderen
Gebruik het inverse inverse om het te isoleren
Vereenvoudig de algemene voorwaarden
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling van de lijn die twee punten met elkaar verbindt (x_1, y_1) en (x_2, y_2) wordt gegeven door (y_2-y_1) / (x_2-x_1) of (y_1-y_2) / (x_1-x_2 ) Aangezien de punten (8, -3) en (1, 0) zijn, wordt de helling van de lijn die hen verbindt gegeven door (0 - (- 3)) / (1-8) of (3) / (- 7) ie -3/7. Product van de helling van twee loodrechte lijnen is altijd -1. Dus de lijnlijn loodrecht daarop is 7/3 en daarom kan de vergelijking in hellingsvorm worden geschreven als y = 7 / 3x + c Als dit door het punt (0, -1) gaat, zetten we deze waarden in bovenstaande vergelijking, we krijgen -1 = 7/3 * 0 + c of c = 1 Daarom i
Noteer de punt-hellingsvorm van de vergelijking met de gegeven helling die het aangegeven punt passeert. A.) de lijn met helling -4 die doorloopt (5,4). en ook B.) de lijn met doorgang 2 (-1, -2). help alstublieft, dit verwarrend?
Y-4 = -4 (x-5) "en" y + 2 = 2 (x + 1)> "de vergelijking van een lijn in" kleur (blauw) "punthellingsvorm" is. • kleur (wit) (x) y-y_1 = m (x-x_1) "waarbij m de helling is en" (x_1, y_1) "een punt op de lijn" (A) "gegeven" m = -4 "en "(x_1, y_1) = (5,4)" vervanging van deze waarden in de vergelijking geeft "y-4 = -4 (x-5) larrcolor (blauw)" in punt-hellingsvorm "(B)" gegeven "m = 2 "en" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blauw) " in punthellingsvorm "