De Main Street Market verkoopt sinaasappelen voor $ 3,00 voor vijf pond en appels voor $ 3,99 voor drie pond. De Off Street Market verkoopt sinaasappels voor $ 2,59 voor vier pond en appels voor $ 1,98 voor twee pond. Wat is de eenheidsprijs voor elk artikel in elke winkel?
Zie een oplossingsprocedure hieronder: Main Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_m O_m = ($ 3,00) / (5 lb) = ($ 0,60) / (lb) = $ 0,60 per pond Appelen - Laten we de eenheidsprijs noemen: A_m A_m = ($ 3,99) / (3 lb) = ($ 1,33) / (lb) = $ 1,33 per pond Off Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_o O_o = ($ 2,59) / (4 lb) = ($ 0,65) / (lb) = $ 0,65 per pond Appels - Laten we de eenheidsprijs noemen: A_o A_o = ($ 1,98) / (2 lb) = ($ 0,99) / (lb) = $ 0,99 per pond
De helling m van een lineaire vergelijking kan worden gevonden met behulp van de formule m = (y_2 - y_1) / (x_2-x_1), waarbij de x-waarden en y-waarden afkomstig zijn van de twee geordende paren (x_1, y_1) en (x_2 , y_2), Wat is een equivalente vergelijking opgelost voor y_2?
Ik weet niet zeker of je dit wilt, maar ... Je kunt je expressie anders rangschikken om y_2 te isoleren met een paar 'Algaebric Movements' over het = teken: Uitgaande van: m = (y_2-y_1) / (x_2-x_1) Take ( x_2-x_1) aan de linkerkant tegenover het = -teken, daarbij herinnerend dat als het zich oorspronkelijk deelde, het gelijkteken voorbij ging, het nu vermenigvuldigt: (x_2-x_1) m = y_2-y_1 Vervolgens nemen we y_1 naar links om te onthouden dat we van operatie moeten veranderen opnieuw: van aftrekken tot sum: (x_2-x_1) m + y_1 = y_2 Nu kunnen we de geherrangschikte expressie in termen van y_2 "lezen" als: y
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}