
Antwoord:
Grafieken
Uitleg:
De gegeven vergelijking
set
We hebben het y-snijpunt op
~~~~~~~~~~~~~~~~~~~~~~~~~
Nu instellen
We hebben het X-snijpunt op
Andere punten zijn
Sinds de grafiek van
Als tanx = -1/3, cos> 0, hoe vind je dan tan2x?

Tan 2x = (2tanx) / (1 - tan ^ 2x) Deze identiteit komt van pas, misschien wilt u hem wel onthouden. = (2 (-1/3)) / (1 - 1/9) = (- 2/3) / (8/9) = -2 / 3 (9/8) = -3/4
Bewijs dat ?? (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x

LHS = (sinx + sin2x + sin3x) / (cosx + cos2x + cos3x) = (2sin ((3x + x) / 2) * cos ((3x-x) / 2) + sin2x) / (2cos ((3x + x) / 2) * cos ((3x-x) / 2) + cos2x = (2sin2x * cosx + sin2x) / (2cos2x * cosx + cos2x) = (sin2xcancel ((1 + 2cosx))) / (cos2xcancel (( 1 + 2cosx))) = tan2x = RHS
Los 1 / (tan2x-tanx) -1 / (cot2x-cotx) = 1 op?

1 / (tan2x-tanx) -1 / (cot2x-cotx) = 1 => 1 / (tan2x-tanx) -1 / (1 / (tan2x) -1 / tanx) = 1 => 1 / (tan2x-tanx ) + 1 / (1 / (tanx) -1 / (tan2x)) = 1 => 1 / (tan2x-tanx) + (tanxtan2x) / (tan2x-tanx) = 1 => (1 + tanxtan2x) / (tan2x -tanx) = 1 => 1 / tan (2x-x) = 1 => tan (x) = 1 = tan (pi / 4) => x = npi + pi / 4