Antwoord:
Uitleg:
Gegevens:-
Begin snelheid
Laatste snelheid
Hoogte
Versnelling door de zwaartekracht
Sol:-
Snelheid bij impact is de snelheid van de bal wanneer deze het oppervlak raakt.
We weten dat:-
Vandaar dat de snelheid op imact is
Een deeltje wordt geprojecteerd vanaf de grond met een snelheid van 80 m / s onder een hoek van 30 ° met horizontaal vanaf de grond. Wat is de grootte van de gemiddelde snelheid van het deeltje in het tijdsinterval t = 2s tot t = 6s?
Laten we de tijd bekijken die het deeltje nodig heeft om de maximale hoogte te bereiken, het is, t = (u sin theta) / g Gegeven, u = 80ms ^ -1, theta = 30 dus, t = 4.07 s Dat betekent dat het bij 6s al begonnen is naar beneden gaan. Dus, opwaartse verplaatsing in 2s is, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m en verplaatsing in 6s is s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Dus verticale verschuiving in (6-2) = 4s is (63.6-60.4) = 3.2m en horizontale verplaatsing in (6-2) = 4s is (u cos theta * 4) = 277.13m Dus de netto verplaatsing is 4s is sqrt (3.2 ^ 2 + 277.13 ^ 2) = 277.15m Dus, gemiddelde velcoïteit =
Objecten A, B, C met de massa's m, 2 m en m worden op een wrijvingsloos horizontaal oppervlak gehouden. Het object A beweeg met een snelheid van 9 m / s richting B en maakt er een elastische botsing mee. B maakt volledig onelastische botsing met C. Dan is de snelheid van C?
Bij een volledig elastische botsing kan worden aangenomen dat alle kinetische energie wordt overgedragen van het bewegende lichaam naar het lichaam in rust. 1 / 2m_ "eerste" v ^ 2 = 1 / 2m_ "andere" v_ "laatste" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Nu bij een volledig onelastische botsing gaat alle kinetische energie verloren, maar wordt het momentum overgedragen. Daarom m_ "initiaal" v = m_ "finaal" v_ "finaal" 2m9 / sqrt (2) = m v_ "fin
Bij een landing met een landingsbaan loopt een terugloop van 95,0 kg naar de eindzone bij 3,75 m / s. Een linebacker van 111 kg met een verplaatsing van 4.10 m / s ontmoet de loper tijdens een frontale botsing. Als de twee spelers bij elkaar blijven, wat is hun snelheid onmiddellijk na de botsing?
V = 0.480 m.s ^ (- 1) in de richting waarin de linebacker zich bewoog. De botsing is niet elastisch omdat ze aan elkaar blijven plakken. Momentum is behouden, kinetische energie is dat niet. Werk het initiële momentum uit, dat gelijk is aan het laatste momentum en gebruik dat om op te lossen voor de eindsnelheid. Eerste momentum. Linebacker en runner bewegen in tegengestelde richtingen ... kies een positieve richting. Ik zal de richting van de linebacker als positief nemen (hij heeft een grotere massa en snelheid, maar je kunt de richting van de hardloper als positief nemen als je wilt, wees gewoon consistent). Voorwa