De algemene vorm van de cosinus functie kan worden geschreven als
Als
www.regentsprep.org/regents/math/algtrig/att7/sinusoidal.htm
Verticale en horizontale verschuivingen,
Dit is een goed voorbeeld van verticale en horizontale verschuivingen:
www.sparknotes.com/math/trigonometry/graphs/section3.rhtml
Als de som van de coëfficiënt van de 1e, 2e, 3e termijn van de uitbreiding van (x2 + 1 / x) verhoogd tot de macht m is 46, zoek dan de coëfficiënt van de termen die geen x bevat?
Eerste vind m. De eerste drie coëfficiënten zijn altijd ("_0 ^ m) = 1, (" _1 ^ m) = m, en ("_2 ^ m) = (m (m-1)) / 2. De som van deze vereenvoudigt naar m ^ 2/2 + m / 2 + 1. Stel dit gelijk aan 46, en los op m. m ^ 2/2 + m / 2 + 1 = 46 m ^ 2 + m + 2 = 92 m ^ 2 + m - 90 = 0 (m + 10) (m - 9) = 0 De enige positieve oplossing is m = 9. Nu, in de uitbreiding met m = 9, moet de term die x mist de term bevatten (x ^ 2) ^ 3 (1 / x) ^ 6 = x ^ 6 / x ^ 6 = 1 Deze term heeft een coëfficiënt van ("_6 ^ 9) = 84. De oplossing is 84.
Een solide bol rolt puur op een ruw horizontaal oppervlak (kinetische wrijvingscoëfficiënt = mu) met snelheid van middelpunt = u. Het botst inelastisch met een gladde verticale muur op een bepaald moment. De restitutiecoëfficiënt is 1/2?
(3u) / (7mug) Nou, terwijl we een poging doen om dit op te lossen, kunnen we zeggen dat in eerste instantie puur rollen plaatsvond juist vanwege u = omegar (waar, omega is de hoeksnelheid) Maar toen de botsing plaatsvond, was het lineair de snelheid daalt, maar tijdens de botsing was er geen verandering in de omega-omega, dus als de nieuwe snelheid v is en de hoeksnelheid omega is, dan moeten we na hoeveel keren als gevolg van het toegepaste externe koppel door wrijvingskracht, het in puur rollen zijn , ie v = omega'r Nu, gegeven, de restitutiecoëfficiënt is 1/2 dus na de botsing zal de bol een snelheid van u
Hoe schrijf je een polynomiale functie van de laagste graad die reële coëfficiënten heeft, de volgende gegeven nulpunten -5,2, -2 en een leidende coëfficiënt van 1?
Het vereiste polynoom is P (x) = x ^ 3 + 5x ^ 2-4x-20. We weten dat: als a een nul is van een echte polynoom in x (zeg), dan is x-a de factor van de polynoom. Laat P (x) de vereiste polynoom zijn. Hier -5,2, -2 zijn de nullen van het vereiste polynoom. impliceert {x - (- 5)}, (x-2) en {x - (- 2)} zijn de factoren van de vereiste polynoom. impliceert P (x) = (x + 5) (x-2) (x + 2) = (x + 5) (x ^ 2-4) betekent P (x) = x ^ 3 + 5x ^ 2-4x- 20 Het vereiste polynoom is dus P (x) = x ^ 3 + 5x ^ 2-4x-20