Antwoord:
Gebruik de generalisatie van de binomiale formule voor complexe getallen.
Uitleg:
Er is een generalisatie van de binomiale formule naar de complexe getallen.
De algemene binomiale reeksenformule lijkt te zijn
Dit is een machtsserie, dus als we kansen willen hebben dat dit niet uiteenloopt, moeten we het instellen
Ik ga niet aantonen dat de formule waar is, maar het is niet te moeilijk, je moet gewoon zien dat de complexe functie gedefinieerd wordt door
Hoe gebruik je de binomiale reeks om uit te breiden (5 + x) ^ 4?
(5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4 De uitbreiding van de binomiale reeks voor (a + bx) ^ n, ninZZ; n> 0 wordt gegeven door: (a + bx) ^ n = sum_ (r = 0) ^ n ((n!) / (r! (n-1)!) a ^ (nr) (bx) ^ r) Dus, we hebben: (5 + x) ^ 4 = (4!) / (0 * 4!) 5 ^ 4 + (4!) / (1 * 3!) (5) ^ 3x + (4!) / (2 * 2!) (5) ^ 2x ^ 2 + (4!) / (4! * 1!) (5) x ^ 3 + (4!) / (4! * 0!) X ^ 4 (5 + x) ^ 4 = 5 ^ 4 + 4 (5) ^ 3x + 6 (5) ^ 2x ^ 2 + 4 (5) x ^ 3 + x ^ 4 (5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4
Gebruik de binomiale stelling om uit te breiden (x + 7) ^ 4 en het resultaat in vereenvoudigde vorm uit te drukken?
2401 + 1372x + 294x ^ 2 + 28x ^ 3 + x ^ 4 Met binomiale stelling kunnen we (a + bx) ^ c uitdrukken als een uitvergrote set van x-termen: (a + bx) ^ c = sum_ (n = 0) ^ c (c!) / (n! (cn)!) a ^ (cn) (bx) ^ n Hier hebben we (7 + x) ^ 4 Dus om uit te breiden doen we dat: (4!) / (0 ! (4-0)!) ^ 7 (4-0) x ^ + 0 (4!) / (1! (4-1)!) ^ 7 (4-1) x ^ 1 + (4!) / (2! (4-2)!) ^ 7 (4-2) x ^ 2 + (4!) / (3! (4-3)!) ^ 7 (4-3) x ^ 3 + (4! ) / (4! (4-4)!) 7 ^ (4-4) x ^ 4 (4!) / (0! (4-0)!) 7 ^ 4x ^ 0 + (4!) / (1 ! (4-1)!) ^ 7 ^ 3 x 1 + (4!) / (2! (4-2)!) 7 ^ ^ 2 + 2x (4!) / (3! (4-3)!) 7x ^ 3 + (4!) / (4! (4-4)!) 7 ^ 0x ^ 4 (4!) / (0! 4!) 7 ^ 4 +
Hoe gebruik je de binomiale reeks om sqrt (z ^ 2-1) uit te breiden?
Sqrt (z ^ 2-1) = i [1-1 / 2z ^ 2 - 1 / 8z ^ 4 - 1 / 16z ^ 6 + ...] Ik zou best een dubbele controle willen, omdat ik als natuurkundestudent maar zelden ga voorbij (1 + x) ^ n ~~ 1 + nx voor kleine x dus ik ben een beetje roestig. De binomiale reeks is een gespecialiseerd geval van de binomiale stelling waarin staat dat (1 + x) ^ n = sum_ (k = 0) ^ (oo) ((n), (k)) x ^ k With ((n), (k)) = (n (n-1) (n-2) ... (n-k + 1)) / (k!) Wat we hebben is (z ^ 2-1) ^ (1/2) , dit is niet de juiste vorm. Om dit recht te zetten, herinner je eraan dat ik ^ 2 = -1 dus we hebben: (i ^ 2 (1-z ^ 2)) ^ (1/2) = i (1-z ^ 2) ^ (1/2) Dit is nu in de j