We weten dat een projectiel op het hoogste punt van zijn beweging alleen zijn horizontale snelheidscomponent heeft, d.w.z.
Dus, na het breken, kan een deel zijn weg terugvinden als het dezelfde snelheid zal hebben na de collie in de tegenovergestelde richting.
Dus, het toepassen van de wet van behoud van momentum, Het aanvankelijke momentum was
Nadat de collieion momentum werd,
Dus, als we gelijk krijgen,
of,
De snelheid van een deeltje dat langs de x-as beweegt, wordt gegeven als v = x ^ 2 - 5x + 4 (in m / s), waarbij x staat voor de x-coördinaat van het deeltje in meters. Vind de grootte van de versnelling van het deeltje wanneer de snelheid van het deeltje nul is?
A Gegeven snelheid v = x ^ 2-5x + 4 Versnelling a - = (dv) / dt: .a = d / dt (x ^ 2-5x + 4) => a = (2x (dx) / dt-5 (dx) / dt) We weten ook dat (dx) / dt- = v => a = (2x -5) v bij v = 0 bovenstaande vergelijking wordt a = 0
Een deeltje wordt geprojecteerd vanaf de grond met een snelheid van 80 m / s onder een hoek van 30 ° met horizontaal vanaf de grond. Wat is de grootte van de gemiddelde snelheid van het deeltje in het tijdsinterval t = 2s tot t = 6s?
Laten we de tijd bekijken die het deeltje nodig heeft om de maximale hoogte te bereiken, het is, t = (u sin theta) / g Gegeven, u = 80ms ^ -1, theta = 30 dus, t = 4.07 s Dat betekent dat het bij 6s al begonnen is naar beneden gaan. Dus, opwaartse verplaatsing in 2s is, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m en verplaatsing in 6s is s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Dus verticale verschuiving in (6-2) = 4s is (63.6-60.4) = 3.2m en horizontale verplaatsing in (6-2) = 4s is (u cos theta * 4) = 277.13m Dus de netto verplaatsing is 4s is sqrt (3.2 ^ 2 + 277.13 ^ 2) = 277.15m Dus, gemiddelde velcoïteit =
Twee ruiten hebben zijden met een lengte van 4. Als een ruit een hoek heeft met een hoek van pi / 12 en de andere een hoek heeft met een hoek van (5pi) / 12, wat is het verschil tussen de gebieden van de ruiten?
Verschil in Oppervlakte = 11.31372 "" vierkante eenheden Om het gebied van een ruit te berekenen Gebruik de formule Gebied = s ^ 2 * sin theta "" waar s = zijkant van de ruit en theta = hoek tussen twee zijden Bereken het gebied van ruit 1. Area = 4 * 4 * sin ((5pi) / 12) = 16 * sin 75^@=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~