Antwoord:
Uitleg:
Laat de hoekpunten van
Met behulp van afstandsformule,
Nu, gebied van
Ook,
Nu, laat
Twee parallelle koorden van een cirkel met lengten van 8 en 10 dienen als basis van een trapezium ingeschreven in de cirkel. Als de lengte van een straal van de cirkel 12 is, wat is dan het grootst mogelijke oppervlak van een dergelijke beschreven ingeschreven trapezium?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Overweeg Fign. 1 en 2 Schematisch kunnen we een parallellogram ABCD in een cirkel plaatsen, en op voorwaarde dat zijden AB en CD akkoorden zijn van de cirkels, op de manier van figuur 1 of figuur 2. De voorwaarde dat de zijden AB en CD moeten zijn akkoorden van de cirkel impliceert dat de ingeschreven trapezoïde een gelijkbenige moet zijn omdat de diagonalen van de trapezoïde (AC en CD) gelijk zijn omdat A hat BD = B hat AC = B hatD C = A hat CD en de lijn loodrecht op AB en CD passerend door het midden E doorsnijdt deze akkoorden (dit betekent dat AF = BF en CG = DG en
We hebben een cirkel met een ingeschreven vierkant met een ingeschreven cirkel met een ingeschreven gelijkzijdige driehoek. De diameter van de buitenste cirkel is 8 voet. Het driehoeksmateriaal kost $ 104,95 per vierkante voet. Wat zijn de kosten van het driehoekige centrum?
De kosten van een driehoekig centrum zijn $ 1090.67 AC = 8 als een gegeven diameter van een cirkel. Daarom, vanuit de stelling van Pythagoras voor de rechter gelijkbenige driehoek Delta ABC, AB = 8 / sqrt (2) Vervolgens, aangezien GE = 1/2 AB, GE = 4 / sqrt (2) Uiteraard is driehoek Delta GHI gelijkzijdig. Punt E is een middelpunt van een cirkel die Delta GHI omschrijft en is als zodanig een middelpunt van snijpunten van medianen, hoogten en hoekbisectors van deze driehoek. Het is bekend dat een snijpunt van medianen deze medianen verdeelt in de verhouding 2: 1 (zie voor bewijzen Unizor en volg de links Geometrie - Paralle
Cirkel A heeft een straal van 2 en een middelpunt van (6, 5). Cirkel B heeft een straal van 3 en een middelpunt van (2, 4). Als cirkel B wordt vertaald door <1, 1>, overlapt cirkel A dan? Zo nee, wat is de minimale afstand tussen punten op beide cirkels?
"cirkels overlappen"> "wat we hier moeten doen is de afstand (d)" "vergelijken tussen de middelpunten en de som van de radii" • "als de som van radii"> d "dan cirkels elkaar overlappen" • "als som van radii "<d" en dan geen overlapping "" voor het berekenen van d dat we nodig hebben om het nieuwe centrum "" van B te vinden na de gegeven vertaling "" onder de vertaling "<1,1> (2,4) tot (2 + 1, 4 + 1) tot (3,5) larrcolor (rood) "nieuw centrum van B" "om te berekenen d gebruik de" color (blue)