
en dan, door
Antwoord:
Uitleg:
Gegeven twee cijfers
# A + b #
# A-b #
Neem vervolgens de som en het verschil van deze twee uitdrukkingen:
# (a + b) + (a-b) = 2a #
# (a + b) - (a-b) = 2b #
Merk op dat we teruggaan naar de twee nummers waarmee we zijn begonnen, maar verdubbelden.
Dus met
#(78+32)/2 = 110/2 = 55#
#(78-32)/2 = 46/2 = 23#
Het verschil van twee getallen is 3 en hun product is 9. Als de som van hun vierkant 8 is, wat is het verschil tussen hun kubussen?
51 Gegeven: xy = 3 xy = 9 x ^ 2 + y ^ 2 = 8 Dus, x ^ 3-y ^ 3 = (xy) (x ^ 2 + xy + y ^ 2) = (xy) (x ^ 2 + y ^ 2 + xy) Sluit de gewenste waarden in. = 3 * (8 + 9) = 3 * 17 = 51
De som van twee getallen is 12. Het verschil tussen dezelfde twee getallen is 40. Wat zijn de twee getallen?

Noem de twee cijfers x en y. {(x + y = 12), (x - y = 40):} Los het gebruik van eliminatie op. 2x = 52 x = 26 26 + y = 12 y = -14 Dus de twee nummers zijn -14 en 26. Hopelijk helpt dit!
De som van twee getallen is 21. Het verschil van de twee getallen is 19. Wat zijn de twee getallen?

X = 20 en y = 1 De eerste vergelijking kan worden geschreven als x + y = 21 De tweede vergelijking kan worden geschreven als x - y = 19 Het oplossen van de tweede vergelijking voor x geeft: x = 19 + y Vervangen van deze x in de eerste vergelijking geeft: (19 + y) + y = 21 19 + 2y = 21 2y = 21 - 19 2y = 2 y = 1 Het vervangen van deze y in de tweede vergelijking geeft: x - 1 = 19 x = 20