Antwoord:
Uitleg:
De afstand tussen de twee gegeven driedimensionale punten kan worden gevonden uit de normale Euclidische metriek in
Daarom is de snelheid van het object per definitie de snelheid van verandering in afstand en gegeven door
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (6, -2) en object B verplaatst naar (2, 9) over 5 s, wat is de relatieve snelheid van object B vanuit het perspectief van object A? Neem aan dat alle eenheden in meters zijn uitgedrukt.
V_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "afstand tussen het punt van A en B:" Delta s = sqrt (11² + 4 ^ 2) "" Delta s = sqrt (121 + 16) "" Delta s = sqrt137 m v_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "de perspectiefhoek wordt getoond in figuur" (alpha). "" tan alpha = 11/4
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (9, -7) en object B verplaatst naar (-8, 6) over 3 seconden, wat is dan de relatieve snelheid van object B vanuit het perspectief van object A? Neem aan dat alle eenheden in meters zijn uitgedrukt.
V_ "AB" = 7,1 "" m / s alpha = 143 ^ o "van oost" Delta s = sqrt (17 ^ 2 + 13 ^ 2) "" Delta s = sqrt (289 + 169) Delta s = 21 , 4 "" m v_ "AB" = (Delta s) / (Delta t) v_ "AB" = (21,4) / 3 v_ "AB" = 7,1 "" m / s tan (180 alpha) = 13/17 = 37 ^ o alpha = 180-37 alfa = 143 ^ o "vanuit het oosten"
Objecten A en B staan aan de oorsprong. Als object A zich verplaatst naar (5, -7) en object B over 3 sec verplaatst naar (7, 4), wat is dan de relatieve snelheid van object B vanuit het perspectief van object A? Neem aan dat alle eenheden in meters zijn uitgedrukt.
V_a = (5sqrt5) / 3 "m / s" "de groene vector toont verplaatsing van B vanuit het perspectief van A" Delta s = sqrt (2 ^ 2 + 11 ^ 2) "(groene vector)" Delta s = sqrt ( 4 + 121) Delta s = sqrt125 Delta s = 5sqrt5 "m" v_a = (Delta s) / (Delta t) v_a = (5sqrt5) / 3 "m / s"