Als we het eerste nummer noemen, een onbekende,
Dus wanneer we alle termen toevoegen, van
# 8N + 28 = 88 #
Let daar op
Dit geeft ons
# 8n = 60 #
# N = 15/2 #
Merk op dat dit geen geheel getal is, wat ons in een wankel territorium brengt: het is moeilijk te definiëren
Een meer toepasselijke beschrijving hiervan zou zijn dat de som hiervan
#15/2+17/2+19/2+21/2+23/2+25/2+27/2+29/2=88#
Het gemiddelde van acht getallen is 41. Het gemiddelde van twee van de getallen is 29. Wat is het gemiddelde van de andere zes getallen?
Het gemiddelde van de zes getallen is "" 270/6 = 45 Er zijn 3 verschillende reeksen getallen die hier bij betrokken zijn. Een set van zes, een set van twee en de set van alle acht. Elke set heeft zijn eigen gemiddelde. "gemiddelde" = "Totaal" / "aantal cijfers" "" OF M = T / N Let op: als u het gemiddelde en het aantal nummers weet, kunt u het totaal vinden. T = M xxN U kunt getallen toevoegen, u kunt totalen toevoegen, maar u mag niet tegelijkertijd middelen toevoegen. Dus voor alle acht nummers: Het totaal is 8 xx 41 = 328 Voor twee van de nummers: het totaal is 2xx29 = 5
De formule kennen tot de som van de N-getallen a) wat is de som van de eerste N opeenvolgende blokhele getallen, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Som van de eerste N opeenvolgende kubieke gehele getallen Sigma_ (k = 1) ^ N k ^ 3?
Voor S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 We hebben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 oplossing voor sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni maar sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3
Twee gehele getallen hebben een som van 16. één van de gehele getallen is 4 meer dan de andere. wat zijn de andere twee gehele getallen?
Gehele getallen zijn 10 en 6 Laat gehele getallen zijn x en y Som van gehele getallen zijn 16 x + y = 16 (vergelijking 1) Eén gehele getallen is 4 meer dan andere => x = y + 4 in vergelijking 1 x + y = 16 => y + 4 + y = 16 => 2y + 4 = 16 => 2y = 12 => y = 6 en x = y + 4 = 6 + 4 x = 10