Antwoord:
y = 4x - 24
Uitleg:
Een van de vormen van de vergelijking van een lijn is y = mx + c, waarbij m staat voor gradiënt en c, het y-snijpunt.
Om de vergelijking te verkrijgen, moet je m en c vinden.
Om m te vinden, gebruik de
#color (blauw) "verloopformule" #
# m = (y_2 - y_1) / (x_2 -x_1) # waar
# (x_1, y_1) "en" (x_2, y_2) "zijn de coördinaten van 2 punten" # hier zijn de 2 punten (7,4) en (6,0)
laat
# (x_1, y_1) = (7,4) "en" (x_2, y_2) = (6,0) # vervang deze waarden in de gradiëntformule om m te verkrijgen.
#rArr m = (0-4) / (6-7) = (-4) / (- 1) = 4 # en de vergelijking ziet er als volgt uit: y = 4x + c
Om c te vinden, vervangt u 1 van de gegeven coördinatenpunten in de vergelijking.
gebruikmakend van (7,4): 4 =
# (4xx6) x + c 24x + c = 4 c = -24 #
#rArr "vergelijking is" y = 3x - 24 #
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die doorloopt (9, -6) en loodrecht op de lijn waarvan de vergelijking y = 1 / 2x + 2 is?
Y = -2x + 12 De vergelijking van een lijn met bekende gradiënt "" m "" en een bekende reeks coördinaten "" (x_1, y_1) "" wordt gegeven door y-y_1 = m (x-x_1) de vereiste regel staat loodrecht op "" y = 1 / 2x + 2 voor loodrechte verlopen m_1m_2 = -1 de gradiënt van de gegeven lijn is 1/2 thre vereiste helling 1 / 2xxm_2 = -1 => m_2 = -2 dus we hebben coördinaten gegeven " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12
Noteer de punt-hellingsvorm van de vergelijking met de gegeven helling die het aangegeven punt passeert. A.) de lijn met helling -4 die doorloopt (5,4). en ook B.) de lijn met doorgang 2 (-1, -2). help alstublieft, dit verwarrend?
Y-4 = -4 (x-5) "en" y + 2 = 2 (x + 1)> "de vergelijking van een lijn in" kleur (blauw) "punthellingsvorm" is. • kleur (wit) (x) y-y_1 = m (x-x_1) "waarbij m de helling is en" (x_1, y_1) "een punt op de lijn" (A) "gegeven" m = -4 "en "(x_1, y_1) = (5,4)" vervanging van deze waarden in de vergelijking geeft "y-4 = -4 (x-5) larrcolor (blauw)" in punt-hellingsvorm "(B)" gegeven "m = 2 "en" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blauw) " in punthellingsvorm "