Antwoord:
Uitleg:
Antwoord:
Uitleg:
De eerste stap is om de noemer te factoriseren.
# x ^ 2 + 6x = x (x + 6) # Omdat deze factoren lineair zijn, zullen de tellers van de deelfracties constanten zijn, zeg A en B.
dus:
# (x + 1) / (x (x + 6)) = A / x + B / (x + 6) # vermenigvuldig door met x (x + 6)
x + 1 = A (x + 6) + Bx ……………………………….. (1)
Het doel is nu om de waarde van A en B te vinden. Merk op dat als x = 0. de term met B nul zal zijn en als x = -6 is de term met A nul.
laat x = 0 in (1): 1 = 6A
#rArr A = 1/6 # laat x = -6 in (1): -5 = -6B
#rArr B = 5/6 #
#rArr (x + 1) / (x ^ 2 + 6x) = (1/6) / x + (5/6) / (x + 6) # Integraal kan worden geschreven:
# 1 / 6int (dx) / x + 5 / 6int (dx) / (x + 6) #
# = 5 / 6ln | x | + 5 / 6ln | x + 6 | + c #
Hoe int 1 / (x ^ 2 (2x-1)) te integreren met behulp van gedeeltelijke breuken?
2ln | 2x-1 | -2ln | x | + 1 / x + C We moeten A, B, C zo vinden dat 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) voor alle x. Vermenigvuldig beide zijden met x ^ 2 (2x-1) om 1 = Ax (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB Equalerende coëfficiënten geven ons {(2A + C = 0), (2B-A = 0), (- B = 1):} En daarmee hebben we A = -2, B = -1, C = 4. Door dit in de initiële vergelijking te vervangen, krijgen we 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 integreer het nu term per term int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx om 2ln | 2x-1 | -2ln | x | +
Hoe int (x-9) / ((x + 3) (x-6) (x + 4)) te integreren met behulp van gedeeltelijke breuken?
U moet (x-9) / ((x + 3) (x-6) (x + 4)) als een gedeeltelijke breuk ontbinden. U zoekt a, b, c in RR zodat (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x -6) + c / (x + 4). Ik zal je laten zien hoe je een enige kunt vinden, omdat b en c op precies dezelfde manier te vinden zijn. Je vermenigvuldigt beide zijden met x + 3, hierdoor verdwijnt het uit de noemer van de linkerkant en verschijnt het naast b en c. (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff (x -9) / ((x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Je evalueert dit op x-3 om b en c te laten verdwijnen en een
Hoe int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) te integreren met behulp van gedeeltelijke breuken?
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o Stel de vergelijking in om op te lossen voor de variabelen A, B, C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx Laten we eerst A, B, C oplossen (4x ^ 2 + 6x-2) / ((x-1) (x + 1 ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) Vereenvoudig (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B ( x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4x ^ 2 + 6