Antwoord:
Uitleg:
We moeten vinden
voor iedereen
Vermenigvuldig beide kanten met
Equalerende coëfficiënten geven ons
En zo hebben we
Integreer het nu term voor termijn
te krijgen
Antwoord:
Het antwoord is
Uitleg:
Voer de ontleding uit in gedeeltelijke breuken
De noemers zijn hetzelfde, vergelijk de tellers
Laat
Laat
Coëfficiënten van
daarom
Zo,
Hoe int (x-9) / ((x + 3) (x-6) (x + 4)) te integreren met behulp van gedeeltelijke breuken?
U moet (x-9) / ((x + 3) (x-6) (x + 4)) als een gedeeltelijke breuk ontbinden. U zoekt a, b, c in RR zodat (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x -6) + c / (x + 4). Ik zal je laten zien hoe je een enige kunt vinden, omdat b en c op precies dezelfde manier te vinden zijn. Je vermenigvuldigt beide zijden met x + 3, hierdoor verdwijnt het uit de noemer van de linkerkant en verschijnt het naast b en c. (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff (x -9) / ((x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Je evalueert dit op x-3 om b en c te laten verdwijnen en een
Hoe int (x + 1) / (x ^ 2 + 6x) te integreren met behulp van gedeeltelijke breuken?
= int (x + 1) / (x ^ 2 + 6x) d x int (x + 1) / (x ^ 2 + 6x) d x
Hoe int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) te integreren met behulp van gedeeltelijke breuken?
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o Stel de vergelijking in om op te lossen voor de variabelen A, B, C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx Laten we eerst A, B, C oplossen (4x ^ 2 + 6x-2) / ((x-1) (x + 1 ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) Vereenvoudig (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B ( x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4x ^ 2 + 6