Antwoord:
Ik vond:
Uitleg:
hier heb je een faseverandering van vloeistof naar vast waarbij we de vrijkomende warmte kunnen evalueren
waar:
dus voor
Het volume van een ingesloten gas (bij een constante druk) varieert direct als de absolute temperatuur. Als de druk van een monster van 3,46-L neongas bij 302 ° K 0,926 atm is, wat zou het volume dan bij een temperatuur van 338 ° K zijn als de druk niet verandert?
3.87L Interessant praktisch (en heel gebruikelijk) chemieprobleem voor een algebraïsch voorbeeld! Deze geeft niet de werkelijke Ideal Gas Law-vergelijking, maar laat zien hoe een deel ervan (Charles 'Law) is afgeleid van de experimentele gegevens. Algebraïsch wordt ons verteld dat de snelheid (helling van de lijn) constant is ten opzichte van de absolute temperatuur (de onafhankelijke variabele, meestal de x-as) en het volume (afhankelijke variabele of y-as). Het bepalen van een constante druk is noodzakelijk voor de juistheid, omdat het ook in werkelijkheid bij de gasvergelijkingen is betrokken. Ook kan de f
Penny keek naar haar klerenkast. Het aantal jurken dat ze bezat, was 18 meer dan het dubbele van het aantal kleuren. Het aantal jurken en het aantal pakken bedroeg samen 51. Wat was het nummer van elk exemplaar dat ze bezat?
Penny bezit 40 jurken en 11 pakken. Let d and s zijn respectievelijk het aantal jurken en pakken. Er wordt ons verteld dat het aantal jurken 18 meer dan tweemaal het aantal kleuren is. Daarom: d = 2s + 18 (1) Er wordt ons ook verteld dat het totale aantal jurken en pakken 51 is. Daarom is d + s = 51 (2) Van (2): d = 51-s Vervanging van d in (1 ) hierboven: 51-s = 2s + 18 3s = 33 s = 11 Vervangen voor s in (2) hierboven: d = 51-11 d = 40 Het aantal jurken (d) is dus 40 en het aantal kleuren (s) ) is 11.
Een voorwerp met een massa van 2 kg, een temperatuur van 315 ^ oC en een soortelijke warmte van 12 (KJ) / (kg * K) wordt in een container met 37 l water bij 0 ° oC gedruppeld. Verdampt het water? Zo nee, door hoeveel verandert de temperatuur van het water?
Het water verdampt niet. De eindtemperatuur van het water is: T = 42 ^ oC Dus de temperatuur verandert: ΔT = 42 ^ oC De totale warmte, als beide in dezelfde fase blijven, is: Q_ (t ot) = Q_1 + Q_2 Startwarmte (vóór mixen) waarbij Q_1 de warmte van water is en Q_2 de warmte van het object. Daarom: Q_1 + Q_2 = m_1 * c_ (p_1) * T_1 + m_2 * c_ (p_2) * T_2 Nu moeten we het erover eens zijn: de warmtecapaciteit van water is: c_ (p_1) = 1 (kcal) / (kg * K) = 4,18 (kJ) / (kg * K) De dichtheid van water is: ρ = 1 (kg) / (verlicht) => 1lit = 1kg-> dus kg en liters zijn gelijk in water. Dus we hebben: Q_1 + Q_2 = = 37