Antwoord:
# (X-14) ^ 2 = 30 (y + 11,5) #
Uitleg:
Gegeven -
Focus
directrice
Zoek de vergelijking van de parabool.
Kijk naar de grafiek.
Uit de gegeven informatie kunnen we begrijpen dat de parabool naar beneden is gericht.
De vertex ligt op gelijke afstand van de richtlijn en focus.
De totale afstand tussen de twee is 15 eenheden.
De helft van 15 eenheden is 7,5 eenheden.
Dit is
Door 7,5 eenheden naar beneden te verplaatsen
Vandaar dat vertex dat is
De vertex staat niet aan de oorsprong. Dan is de formule
# (X-h) ^ 2 = 4a (y-k) #
Sluit de waarden in.
# (X-14) ^ 2 = 4 (7,5) (y + 11,5) #
# (X-14) ^ 2 = 30 (y + 11,5) #
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (0,3) en een richtlijn van x = -2?
(y-3) ^ 2 = 4 (x + 1)> "vanaf elk punt" (x, y) "op de parabool" "de afstand tot de focus en de richting vanaf dit punt" "zijn gelijk" "met behulp van de" kleur (blauw) "afstandsformule dan" sqrt (x ^ 2 + (y-3) ^ 2) = | x + 2 | kleur (blauw) "vierkant aan beide zijden" x ^ 2 + (y-3) ^ 2 = (x + 2) ^ 2 annuleer (x ^ 2) + (y-3) ^ 2 = annuleer (x ^ 2) + 4x + 4 (y-3) ^ 2 = 4 (x + 1) grafiek {(y-3) ^ 2 = 4 (x + 1) [-10, 10, -5, 5]}
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (-11,4) en een richtlijn van y = 13?
De vergelijking van parabool is y = -1 / 18 (x + 11) ^ 2 + 8.5; De focus ligt op (-11,4) en de regressie is y = 13. De vertex bevindt zich halverwege tussen focus en directrix. Dus vertex is op (-11, (13 + 4) / 2) of (-11,8.5). Omdat directrix zich achter de vertex bevindt, opent de parabool naar beneden en a is negatief. Vergelijking van parabool in vertex-vorm is y = a (x-h) ^ 2 + k; (h, k) is vertex. Hier h = -11, k = 8.5. Dus de vergelijking van parabool is y = a (x + 11) ^ 2 + 8,5; . De afstand van vertex tot richtlijn is D = 13-8.5 = 4.5 en D = 1 / (4 | a |) of | a | = 1 / (4D) = 1 / (4 * 4.5):. | a | = 1/18:. a = -1
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (1, -2) en een richtlijn van y = 9?
Y = -1 / 22x ^ 2 + 1 / 11x + 38/11> "voor elk punt" (x, y) "op de parabool" "de afstand van" (x, y) "tot de focus en de richtliniaal" " zijn gelijk "" met de "color (blue)" afstandsformule "sqrt ((x-1) ^ 2 + (y + 2) ^ 2) = | y-9 | kleur (blauw) "vierkant aan beide zijden" (x-1) ^ 2 + (y + 2) ^ 2 = (y-9) ^ 2 x ^ 2-2x + 1 cancel (+ y ^ 2) + 4y + 4 = cancel (y ^ 2) -18y + 81 rArr-22y + 77 = x ^ 2-2x + 1 rArr-22y = x ^ 2-2x-76 rArry = -1 / 22x ^ 2 + 1 / 11x + 38 / 11larrcolor (rood) "in standaardvorm"