Antwoord:
Je polaire plot zou er ongeveer zo uit moeten zien:
Uitleg:
De vraag is ons te vragen een polaire plot te maken van een functie van hoek,
De functie
Dit is de oorsprong van de oorsprong, die in elke hoek kan zijn, dus laten we onze assen maken,
Vervolgens is het handig om een tabel te maken van de waarde van onze functie. We weten dat
Waarbij we ook een berekening hebben opgenomen van de cartesiaanse coördinaten van elk punt waar
De grafiek van y = g (x) wordt hieronder gegeven. Schets een nauwkeurige grafiek van y = 2 / 3g (x) +1 op dezelfde reeks assen. Label de assen en ten minste 4 punten op uw nieuwe grafiek. Geef het domein en bereik van het origineel en de getransformeerde functie?
Zie de uitleg hieronder. Voor: y = g (x) "domein" is x in [-3,5] "bereik" is y in [0,4.5] Na: y = 2 / 3g (x) +1 "domein" is x in [ -3,5] "bereik" is y in [1,4] Dit zijn de 4 punten: (1) Voor: x = -3, =>, y = g (x) = g (-3) = 0 Na : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (-3,1) (2) Voor: x = 0, =>, y = g (x) = g (0) = 4.5 Na: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Het nieuwpunt is (0,4) (3) Voor: x = 3, =>, y = g (x) = g (3) = 0 Na: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (3,1) (4) Voor: x = 5, = >, y = g (x) = g (5) = 1 Na: y = 2 / 3g (x) + 1
Wat zijn de variabelen van onderstaande grafiek? Hoe zijn de variabelen in grafiek gerelateerd in verschillende punten van de grafiek?
Volume en tijd De titel "Air in Baloon" is eigenlijk een afgeleide conclusie. De enige variabelen in een 2D-plot zoals die worden getoond, zijn die in de x- en y-assen. Daarom zijn Tijd en Volume de juiste antwoorden.
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!