Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
Eerst moeten we de helling van de voor de twee punten in het probleem vinden. De helling kan worden gevonden met behulp van de formule:
Waar
Vervanging van de waarden uit de punten in het probleem geeft:
Laten we de helling noemen voor de lijn loodrecht daarop
De regel van loodrechte hellingen is:
Het vervangen van de berekende helling geeft:
We kunnen nu de punthellingsformule gebruiken om een vergelijking voor de lijn te schrijven. De punthellingsvorm van een lineaire vergelijking is:
Waar
De door ons berekende helling substitueren en de waarden van het punt in het probleem geven:
We kunnen ook de slope-intercept-formule gebruiken. De helling-interceptievorm van een lineaire vergelijking is:
Waar
Het vervangen van de berekende helling geeft:
We kunnen nu de waarden van het punt in het probleem vervangen door
Dit substitueren in de formule met de helling geeft:
Antwoord:
De vergelijking van de lijn is
Uitleg:
De helling van de lijn die passeert
Het product van hellingen van twee loodrechte lijnen is
door
De vergelijking van de lijn die passeert
De vergelijking van de lijn is
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling van de lijn die twee punten met elkaar verbindt (x_1, y_1) en (x_2, y_2) wordt gegeven door (y_2-y_1) / (x_2-x_1) of (y_1-y_2) / (x_1-x_2 ) Aangezien de punten (8, -3) en (1, 0) zijn, wordt de helling van de lijn die hen verbindt gegeven door (0 - (- 3)) / (1-8) of (3) / (- 7) ie -3/7. Product van de helling van twee loodrechte lijnen is altijd -1. Dus de lijnlijn loodrecht daarop is 7/3 en daarom kan de vergelijking in hellingsvorm worden geschreven als y = 7 / 3x + c Als dit door het punt (0, -1) gaat, zetten we deze waarden in bovenstaande vergelijking, we krijgen -1 = 7/3 * 0 + c of c = 1 Daarom i
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (13,20), (16,1)?
Y = 3/19 * x-1 De helling van de lijn loopt door (13,20) en (16,1) is m_1 = (1-20) / (16-13) = - 19/3 We kennen de toestand van perpedicularity tussen twee lijnen is product van hun hellingen gelijk aan -1: .m_1 * m_2 = -1 of (-19/3) * m_2 = -1 of m_2 = 3/19 Dus de lijn die passeert (0, -1 ) is y + 1 = 3/19 * (x-0) of y = 3/19 * x-1 grafiek {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (-5,11), (10,6)?
Y = 3x-1 "de vergelijking van een rechte lijn wordt gegeven door" y = mx + c "waarbij m = de gradiënt &" c = "de y-snijpunt" "we willen de helling van de lijn loodrecht op de lijn" "door de opgegeven punten gaan" (-5,11), (10,6) hebben we "" m_1m_2 = -1 nodig voor de opgegeven regel m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3 dus het vereiste eqn. wordt y = 3x + c het gaat door "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1