Antwoord:
Uitleg:
We relabel in standaardnotatie:
De basis van onze gelijkbenige driehoek is
Het middelpunt van
De richtingsvector van
De richtingsvector van zijn loodlijnen is
We moeten gaan
Dat is een beetje rommelig. Is het juist? Laten we het Alpha vragen.
Super goed! Alpha verifieert zijn gelijkbenige en het gebied is
Een gelijkbenige driehoek heeft zijden A, B en C waarvan zijden B en C gelijk zijn in lengte. Als kant A van (1, 4) naar (5, 1) gaat en het gebied van de driehoek 15 is, wat zijn de mogelijke coördinaten van de derde hoek van de driehoek?
De twee hoekpunten vormen een basis van lengte 5, dus de hoogte moet 6 zijn om gebied 15 te krijgen. De voet is het middelpunt van de punten en zes eenheden in de richting loodrecht geeft (33/5, 73/10) of (- 3/5, - 23/10). Pro tip: probeer te houden aan de conventie van kleine letters voor driehoekige zijden en hoofdletters voor driehoekige hoekpunten. We krijgen twee punten en een deel van een gelijkbenige driehoek. De twee punten vormen de basis, b = sqrt {(5-1) ^ 2 + (1-4) ^ 2} = 5. De voet F van de hoogte is het middelpunt van de twee punten, F = ((1 + 5) / 2, (4 + 1) / 2) = (3, 5/2) De richtingsvector tussen de punten
Een driehoek heeft zijden A, B en C. De hoek tussen zijden A en B is (7pi) / 12. Als kant C een lengte van 16 heeft en de hoek tussen zijden B en C pi / 12 is, wat is dan de lengte van zijde A?
A = 4.28699 eenheden Laat me eerst de zijkanten aanduiden met de kleine letters a, b en c. Laat me de hoek tussen kant "a" en "b" met / _ C, hoek tussen zijde "b" en "c" / _ A en hoek tussen zijde "c" en "a" door / _ B. Opmerking: - het teken / _ wordt gelezen als "hoek". We krijgen met / _C en / _A. Het is gegeven dat kant c = 16. Het gebruik van de Wet van Sines (Zonde / _A) / a = (sin / _C) / c impliceert Zonde (pi / 12) / a = sin ((7pi) / 12) / 16 impliceert 0.2588 / a = 0.9659 / 16 impliceert 0.2588 / a = 0.06036875 impliceert a = 0.2588 / 0.0603687
Een driehoek heeft zijden A, B en C. De hoek tussen zijden A en B is (5pi) / 12 en de hoek tussen zijden B en C is pi / 12. Als kant B een lengte van 4 heeft, wat is dan het gebied van de driehoek?
Pl, zie hieronder De hoek tussen zijden A en B = 5pi / 12 De hoek tussen zijden C en B = pi / 12 De hoek tussen zijden C en A = pi -5pi / 12-pi / 12 = pi / 2 vandaar de driehoek is een rechte hoek en B is de hypotenusa. Daarom kant A = Bsin (pi / 12) = 4sin (pi / 12) kant C = Bcos (pi / 12) = 4cos (pi / 12) So gebied = 1 / 2ACsin (pi / 2) = 1/2 * 4sin (pi / 12) * 4cos (pi / 12) = 4 * 2sin (pi / 12) * cos (pi / 12) = 4 * sin (2pi / 12) = 4 * sin (pi / 6) = 4 * 1 / 2 = 2 vierkante eenheid