Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
De vergelijking
Dit is per definitie een verticale lijn.
Een lijn evenwijdig hieraan zal ook een verticale lijn zijn. En voor elke waarde van
Omdat de
De vergelijking van de lijn is -3y + 4x = 9. Hoe schrijf je de vergelijking van een lijn die parallel is aan de lijn en door het punt loopt (-12,6)?
Y-6 = 4/3 (x + 12) We zullen het puntgradiënt-formulier gebruiken omdat we al een punt hebben waar de lijn naar toe gaat (-12,6) en het woord parallel betekent dat het verloop van de twee lijnen moet hetzelfde zijn. om de helling van de parallelle lijn te vinden, moeten we de helling van de lijn vinden die er parallel mee loopt. Deze lijn is -3y + 4x = 9 wat kan worden vereenvoudigd tot y = 4 / 3x-3. Dit geeft ons de gradiënt van 4/3 Nu om de vergelijking te schrijven die we in deze formule plaatsen y-y_1 = m (x-x_1), waar (x_1, y_1) het punt is dat ze doorlopen en m het verloop is.
Lijn L heeft vergelijking 2x- 3y = 5. Lijn M loopt door het punt (3, -10) en is parallel aan lijn L. Hoe bepaal je de vergelijking voor lijn M?
Zie een oplossingsprocedure hieronder: Lijn L is in Standaard Lineaire vorm. De standaardvorm van een lineaire vergelijking is: kleur (rood) (A) x + kleur (blauw) (B) y = kleur (groen) (C) Waar, indien mogelijk, kleur (rood) (A), kleur (blauw) (B) en kleur (groen) (C) zijn gehele getallen en A is niet-negatief en A, B en C hebben geen gemeenschappelijke factoren anders dan 1 kleur (rood) (2) x - kleur (blauw) (3) y = kleur (groen) (5) De helling van een vergelijking in standaardvorm is: m = -kleur (rood) (A) / kleur (blauw) (B) De waarden uit de vergelijking vervangen door de hellingformule geeft: m = kleur (rood) (- 2) /
Bewijs dat, gegeven een lijn en punt niet op die lijn, er precies één lijn is die dat punt loodrecht door die lijn passeert? Je kunt dit wiskundig of door constructie doen (de oude Grieken deden dit)?
Zie hieronder. Laten we aannemen dat de gegeven lijn AB is, en het punt is P, dat niet op AB staat. Laten we nu aannemen dat we een haakse PO op AB hebben getekend. We moeten bewijzen dat deze PO de enige lijn is die door P loopt en loodrecht op AB staat. Nu zullen we een constructie gebruiken. Laten we een nieuwe loodrechte pc bouwen op AB vanaf punt P. Nu het bewijs. We hebben OP loodrecht AB [Ik kan het loodrechte teken niet gebruiken, hoe oud het is] En, ook, PC loodrecht AB. Dus OP || PC. [Beide zijn loodlijnen op dezelfde regel.] Nu hebben zowel OP als pc punt P gemeen en zijn ze parallel. Dat betekent dat ze zouden