Antwoord:
zie hieronder
Uitleg:
Gebruik eigenschap:
Rechterzijde:
Laat zien dat cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ik ben een beetje in de war als ik Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) maak, zal het negatief worden als cos (180 ° -theta) = - costheta in het tweede kwadrant. Hoe kan ik de vraag bewijzen?
Zie onder. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hoe verifieer je [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Bewijs hieronder Expansie van een ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), en we kunnen dit gebruiken: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identiteit: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB
Hoe verifieer je cot (x) / sin (x) -tan (x) / cos (x) = csc (x) sec (x) 1 / (sin (x) + cos (x))?
"Dit is niet waar dus vul gewoon x = 10 ° in, bijvoorbeeld en je zult zien dat" "de gelijkheid niet geldt." "Niets meer toe te voegen."