Antwoord:
Uitleg:
Allereerst weten we dat
Hieruit kunnen we aftrekken
In jouw geval,
Uw globale functie is de som van twee periodieke functies. Per definitie,
en in jouw geval vertaalt dit zich in
Vanaf hier kunt u zien dat de periode van
Antwoord:
Uitleg:
De minst positieve P (indien aanwezig) zodanig dat f (t + P) = f (t) is passend
noemde de periode van f (t). Voor deze P, f (t + nP) = f (t), n = + - 1,, + -2, + -3, … #.
Voor
Voor
Hier, de periode voor
Voor de gegeven samengestelde oscillatie f (t) zou de periode P moeten zijn
zodanig dat het ook de periode voor de afzonderlijke voorwaarden is.
Deze P wordt gegeven door # P = M (pi / 18) = N (pi / 21). Voor M = 42 en N = 36,
Zie nu hoe het werkt.
# = F (t).
Als halve P tot 761 en dit is oneven. Dus, P = 1512 is het minst mogelijk
zelfs meerdere van
Laat zien dat cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ik ben een beetje in de war als ik Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) maak, zal het negatief worden als cos (180 ° -theta) = - costheta in het tweede kwadrant. Hoe kan ik de vraag bewijzen?
Zie onder. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Wat is de periode en de fundamentele periode van y (x) = sin (2x) + cos (4x)?
Y (x) is een som van twee trignometrische functies. De periode van sin 2x zou zijn (2pi) / 2 die pi of 180 graden is. Periode van cos4x zou (2pi) / 4 zijn die pi / 2 of 90 graden is. Zoek de LCM van 180 en 90. Dat zou 180 zijn. Vandaar dat de periode van de gegeven functie pi zou zijn
Wat is de periode van f (theta) = sin 15 t - cos t?
2pi. De periode voor zowel sin kt als cos kt is (2pi) / k. Dus de afzonderlijke perioden voor sin 15t en -cos t zijn (2pi) / 15 en 2pi. Aangezien 2pi 15 X (2pi) / 15 is, is 2pi de periode voor de samengestelde oscillatie van de som. f (t + 2pi) = sin (15 (t + 2pi)) - cos (t + 2pi) = sin (15t + 30pi)) - cos (t + 2pi) = sin 15t-cos t = f (t).